
H2 Database Engine
Version 1.4.200 (2019-10-14)

1 of 347

Table of Contents

Quickstart...22
Embedding H2 in an Application...22
The H2 Console Application..22

Step-by-Step..22
Installation...22
Start the Console..23
Login...23
Sample..24
Execute..25
Disconnect...26
End..26

Installation...27
Requirements..27

Database Engine..27
H2 Console..27

Supported Platforms..27
Installing the Software...27
Directory Structure..27

Tutorial..29
Starting and Using the H2 Console...29

Firewall...30
Testing Java..31
Error Message 'Port may be in use'..31
Using another Port...31
Connecting to the Server using a Browser...31
Multiple Concurrent Sessions..32
Login...32
Error Messages..32
Adding Database Drivers..32
Using the H2 Console...32
Inserting Table Names or Column Names..32
Disconnecting and Stopping the Application...33

Special H2 Console Syntax...33
Settings of the H2 Console...35
Connecting to a Database using JDBC...35
Creating New Databases..36
Using the Server..37

Starting the Server Tool from Command Line...37
Connecting to the TCP Server...37
Starting the TCP Server within an Application..37
Stopping a TCP Server from Another Process...38

Using Hibernate...38

2 of 347

Using TopLink and Glassfish...39
Using EclipseLink...39
Using Apache ActiveMQ...39
Using H2 within NetBeans..40
Using H2 with jOOQ..40
Using Databases in Web Applications..41

Embedded Mode..41
Server Mode..41
Using a Servlet Listener to Start and Stop a Database................................42
Using the H2 Console Servlet..43

Android...44
CSV (Comma Separated Values) Support..45

Reading a CSV File from Within a Database...45
Importing Data from a CSV File...45
Writing a CSV File from Within a Database..45
Writing a CSV File from a Java Application...46
Reading a CSV File from a Java Application..46

Upgrade, Backup, and Restore...47
Database Upgrade...47
Backup using the Script Tool...47
Restore from a Script...47
Online Backup..48

Command Line Tools...48
The Shell Tool...49
Using OpenOffice Base..49
Java Web Start / JNLP...50
Using a Connection Pool..50
Fulltext Search..51

Using the Native Fulltext Search..51
Using the Apache Lucene Fulltext Search...52

User-Defined Variables...53
Date and Time..54
Using Spring...55

Using the TCP Server...55
OSGi...55
Java Management Extension (JMX)...55

Features...57
Feature List...57

Main Features..57
Additional Features..58
SQL Support..58
Security Features...58
Other Features and Tools...59

H2 in Use..59
Connection Modes...59

3 of 347

Embedded Mode..60
Server Mode..60
Mixed Mode...61

Database URL Overview...61
Connecting to an Embedded (Local) Database...63
In-Memory Databases..63
Database Files Encryption..64

Creating a New Database with File Encryption...64
Connecting to an Encrypted Database...64
Encrypting or Decrypting a Database...65

Database File Locking..65
Opening a Database Only if it Already Exists...66
Closing a Database..66

Delayed Database Closing...66
Don't Close a Database when the VM Exits..66

Execute SQL on Connection...67
Ignore Unknown Settings...67
Changing Other Settings when Opening a Connection....................................67
Custom File Access Mode...68
Multiple Connections..68

Opening Multiple Databases at the Same Time..68
Multiple Connections to the Same Database: Client/Server.........................68
Multithreading Support...68
Locking, Lock-Timeout, Deadlocks...69
Avoiding Deadlocks..70

Database File Layout...70
Moving and Renaming Database Files..71
Backup..71

Logging and Recovery...72
Compatibility...72

Compatibility Modes...72
DB2 Compatibility Mode..72
Derby Compatibility Mode...73
HSQLDB Compatibility Mode...73
MS SQL Server Compatibility Mode..73
MySQL Compatibility Mode...74
Oracle Compatibility Mode..74
PostgreSQL Compatibility Mode...75
Ignite Compatibility Mode...75

Auto-Reconnect...76
Automatic Mixed Mode...76
Page Size..77
Using the Trace Options...77

Trace Options..77
Setting the Maximum Size of the Trace File...78

4 of 347

Java Code Generation..78
Using Other Logging APIs..79
Read Only Databases...79
Read Only Databases in Zip or Jar File..79

Opening a Corrupted Database...80
Computed Columns / Function Based Index..80
Multi-Dimensional Indexes...81
User-Defined Functions and Stored Procedures...81

Referencing a Compiled Method..82
Declaring Functions as Source Code..82
Method Overloading...83
Function Data Type Mapping..83
Functions That Require a Connection..84
Functions Throwing an Exception..84
Functions Returning a Result Set...84
Using SimpleResultSet..84
Using a Function as a Table..85

Pluggable or User-Defined Tables...85
Triggers..86
Compacting a Database...88
Cache Settings..88
External authentication (Experimental)...89

Performance...91
Performance Comparison...91

Embedded...91
Client-Server..92
Benchmark Results and Comments...93

H2...93
HSQLDB...93
Derby...93
PostgreSQL..94
MySQL...94
Firebird..94
Why Oracle / MS SQL Server / DB2 are Not Listed..................................94

About this Benchmark..94
How to Run..94
Separate Process per Database...95
Number of Connections...95
Real-World Tests..95
Comparing Embedded with Server Databases...95
Test Platform..95
Multiple Runs..95
Memory Usage...95
Delayed Operations..96
Transaction Commit / Durability...96

5 of 347

Using Prepared Statements...96
Currently Not Tested: Startup Time...96

PolePosition Benchmark...96
Database Performance Tuning...98

Keep Connections Open or Use a Connection Pool......................................98
Use a Modern JVM...98
Virus Scanners...98
Using the Trace Options...98
Index Usage..99
Index Hints..99
How Data is Stored Internally...99
Optimizer...100
Expression Optimization..100
COUNT(*) Optimization..100
Updating Optimizer Statistics / Column Selectivity....................................100
In-Memory (Hash) Indexes...101
Use Prepared Statements...101
Prepared Statements and IN(...)...101
Optimization Examples...102
Cache Size and Type..102
Data Types..102
Sorted Insert Optimization..102

Using the Built-In Profiler...102
Application Profiling...103

Analyze First..103
Database Profiling..104
Statement Execution Plans...104

Displaying the Scan Count..105
Special Optimizations..106

How Data is Stored and How Indexes Work..106
Indexes...107
Using Multiple Indexes..109

Fast Database Import..109
Advanced...111

Result Sets..112
Statements that Return a Result Set..112
Limiting the Number of Rows..112
Large Result Sets and External Sorting..112

Large Objects..112
Storing and Reading Large Objects..112
When to use CLOB/BLOB..113
Large Object Compression..113

Linked Tables..113
Updatable Views..114
Transaction Isolation...114

6 of 347

Multi-Version Concurrency Control (MVCC)...116
Table Level Locking (PageStore engine)...116
Lock Timeout...117

Clustering / High Availability...117
Using the CreateCluster Tool...117
Detect Which Cluster Instances are Running..118
Clustering Algorithm and Limitations..119

Two Phase Commit..119
Compatibility...120

Transaction Commit when Autocommit is On...120
Keywords / Reserved Words...120
Standards Compliance..123

Supported Character Sets, Character Encoding, and Unicode....................124
Run as Windows Service..124

Install the Service..124
Start the Service..124
Connect to the H2 Console...124
Stop the Service...125
Uninstall the Service...125
Additional JDBC drivers...125

ODBC Driver..125
ODBC Installation...125
Starting the Server...125
ODBC Configuration...126
PG Protocol Support Limitations..127
Security Considerations...127
Using Microsoft Access...127

Using H2 in Microsoft .NET...128
Using the ADO.NET API on .NET...128
Using the JDBC API on .NET...128

ACID...129
Atomicity...129
Consistency...129
Isolation..129
Durability...129

Durability Problems..129
Ways to (Not) Achieve Durability...130
Running the Durability Test...131

Using the Recover Tool..131
File Locking Protocols...132

File Locking Method 'File'..132
File Locking Method 'Socket'...133
File Locking Method 'FS'..134

Using Passwords..134
Using Secure Passwords...134

7 of 347

Passwords: Using Char Arrays instead of Strings......................................134
Passing the User Name and/or Password in the URL.................................135

Password Hash..135
Protection against SQL Injection...136

What is SQL Injection...136
Disabling Literals..136
Using Constants...137
Using the ZERO() Function..137

Protection against Remote Access...138
Restricting Class Loading and Usage...138
Security Protocols..139

User Password Encryption...139
File Encryption...139
Wrong Password / User Name Delay...140
HTTPS Connections..141

TLS Connections..141
Universally Unique Identifiers (UUID)..141
Spatial Features...142
Recursive Queries..143
Settings Read from System Properties..144
Setting the Server Bind Address...145
Pluggable File System..145
Split File System..146
Database Upgrade...146
Java Objects Serialization...147
Custom Data Types Handler API...147
Limits and Limitations..148
Glossary and Links...149

Commands...150
Index..150

Commands (Data Manipulation)..150
Commands (Data Definition)...150
Commands (Other)...151

Commands (Data Manipulation)..153
SELECT..153
INSERT..155
UPDATE...155
DELETE...156
BACKUP...156
CALL...156
EXECUTE IMMEDIATE..157
EXPLAIN..157
MERGE INTO...157
MERGE USING...158
RUNSCRIPT...158

8 of 347

SCRIPT..159
SHOW...160
Explicit table..160
Table value..161
WITH..161

Commands (Data Definition)..162
ALTER INDEX RENAME...162
ALTER SCHEMA RENAME..162
ALTER SEQUENCE..162
ALTER TABLE ADD...162
ALTER TABLE ADD CONSTRAINT..163
ALTER TABLE RENAME CONSTRAINT..163
ALTER TABLE ALTER COLUMN..163
ALTER TABLE DROP COLUMN...165
ALTER TABLE DROP CONSTRAINT..165
ALTER TABLE SET..165
ALTER TABLE RENAME...166
ALTER USER ADMIN...166
ALTER USER RENAME...166
ALTER USER SET PASSWORD...167
ALTER VIEW RECOMPILE..167
ALTER VIEW RENAME..167
ANALYZE...167
COMMENT...168
CREATE AGGREGATE..168
CREATE ALIAS...169
CREATE CONSTANT...170
CREATE DOMAIN...170
CREATE INDEX..170
CREATE LINKED TABLE..171
CREATE ROLE..172
CREATE SCHEMA...172
CREATE SEQUENCE..173
CREATE TABLE...173
CREATE TRIGGER..174
CREATE USER..175
CREATE VIEW..176
DROP AGGREGATE...176
DROP ALIAS..177
DROP ALL OBJECTS...177
DROP CONSTANT...177
DROP DOMAIN...177
DROP INDEX..178
DROP ROLE...178
DROP SCHEMA...178

9 of 347

DROP SEQUENCE...178
DROP TABLE..179
DROP TRIGGER..179
DROP USER...179
DROP VIEW...180
TRUNCATE TABLE..180

Commands (Other)..180
CHECKPOINT...180
CHECKPOINT SYNC..181
COMMIT..181
COMMIT TRANSACTION...181
GRANT RIGHT..181
GRANT ALTER ANY SCHEMA...182
GRANT ROLE...182
HELP...182
PREPARE COMMIT..183
REVOKE RIGHT..183
REVOKE ROLE..183
ROLLBACK...183
ROLLBACK TRANSACTION..184
SAVEPOINT...184
SET @...184
SET ALLOW_LITERALS...185
SET AUTOCOMMIT...185
SET CACHE_SIZE...185
SET CLUSTER..186
SET BINARY_COLLATION...186
SET UUID_COLLATION...187
SET BUILTIN_ALIAS_OVERRIDE...187
SET CATALOG..187
SET COLLATION...188
SET COMPRESS_LOB..188
SET DATABASE_EVENT_LISTENER..189
SET DB_CLOSE_DELAY...189
SET DEFAULT_LOCK_TIMEOUT...190
SET DEFAULT_TABLE_TYPE..190
SET EXCLUSIVE...190
SET IGNORECASE..191
SET IGNORE_CATALOGS..191
SET JAVA_OBJECT_SERIALIZER..192
SET LAZY_QUERY_EXECUTION...192
SET LOG..193
SET LOCK_MODE...193
SET LOCK_TIMEOUT..194
SET MAX_LENGTH_INPLACE_LOB...194

10 of 347

SET MAX_LOG_SIZE...195
SET MAX_MEMORY_ROWS...195
SET MAX_MEMORY_UNDO..195
SET MAX_OPERATION_MEMORY...196
SET MODE...196
SET OPTIMIZE_REUSE_RESULTS..197
SET PASSWORD...197
SET QUERY_STATISTICS..197
SET QUERY_STATISTICS_MAX_ENTRIES...198
SET QUERY_TIMEOUT..198
SET REFERENTIAL_INTEGRITY...198
SET RETENTION_TIME...199
SET SALT HASH...199
SET SCHEMA..199
SET SCHEMA_SEARCH_PATH..200
SET SESSION CHARACTERISTICS...200
SET THROTTLE..200
SET TRACE_LEVEL...201
SET TRACE_MAX_FILE_SIZE...201
SET UNDO_LOG...202
SET WRITE_DELAY..202
SHUTDOWN...202

Functions..204
Index..204

Numeric Functions..204
String Functions...205
Time and Date Functions..206
System Functions...206
JSON Functions..208

Numeric Functions...208
ABS...208
ACOS...208
ASIN...208
ATAN...209
COS...209
COSH..209
COT..209
SIN...210
SINH...210
TAN...210
TANH..210
ATAN2...211
BITAND...211
BITGET..211
BITNOT...211

11 of 347

BITOR...212
BITXOR...212
LSHIFT..212
RSHIFT..212
MOD..213
CEILING..213
DEGREES...213
EXP...213
FLOOR...214
LN...214
LOG...214
LOG10...214
ORA_HASH..215
RADIANS...215
SQRT...215
PI..215
POWER..216
RAND..216
RANDOM_UUID..216
ROUND..217
ROUNDMAGIC..217
SECURE_RAND...217
SIGN...217
ENCRYPT...218
DECRYPT...218
HASH..218
TRUNCATE...218
COMPRESS..219
EXPAND...219
ZERO...219

String Functions..220
ASCII..220
BIT_LENGTH..220
LENGTH...220
OCTET_LENGTH...220
CHAR..221
CONCAT..221
CONCAT_WS..221
DIFFERENCE..222
HEXTORAW...222
RAWTOHEX...222
INSTR...222
INSERT Function..223
LOWER..223
UPPER...223

12 of 347

LEFT..223
RIGHT...224
LOCATE...224
POSITION..224
LPAD...224
RPAD...225
LTRIM...225
RTRIM...225
TRIM...225
REGEXP_REPLACE..226
REGEXP_LIKE..226
REPEAT...227
REPLACE...227
SOUNDEX..227
SPACE...227
STRINGDECODE...228
STRINGENCODE...228
STRINGTOUTF8...228
SUBSTRING...228
UTF8TOSTRING...229
QUOTE_IDENT...229
XMLATTR...229
XMLNODE..230
XMLCOMMENT...230
XMLCDATA..230
XMLSTARTDOC..230
XMLTEXT...231
TO_CHAR..231
TRANSLATE...231

Time and Date Functions...231
CURRENT_DATE...231
CURRENT_TIME...232
CURRENT_TIMESTAMP...232
LOCALTIME...232
LOCALTIMESTAMP...233
DATEADD..233
DATEDIFF..234
DAYNAME..234
DAY_OF_MONTH..234
DAY_OF_WEEK..235
ISO_DAY_OF_WEEK...235
DAY_OF_YEAR...235
EXTRACT...235
FORMATDATETIME..236
HOUR..236

13 of 347

MINUTE...236
MONTH...236
MONTHNAME...237
PARSEDATETIME...237
QUARTER..237
SECOND..237
WEEK..238
ISO_WEEK...238
YEAR...238
ISO_YEAR..238

System Functions..239
ARRAY_GET...239
ARRAY_LENGTH...239
ARRAY_CONTAINS...239
ARRAY_CAT...239
ARRAY_APPEND...240
ARRAY_SLICE..240
AUTOCOMMIT..240
CANCEL_SESSION..240
CASEWHEN Function..241
CAST...241
COALESCE...241
CONVERT..242
CURRVAL...242
CSVREAD...242
CSVWRITE...243
CURRENT_SCHEMA..244
CURRENT_CATALOG..244
DATABASE_PATH...244
DECODE..245
DISK_SPACE_USED..245
SIGNAL..245
ESTIMATED_ENVELOPE..245
FILE_READ..246
FILE_WRITE..246
GREATEST...246
IDENTITY..247
IFNULL..247
LEAST...247
LOCK_MODE..247
LOCK_TIMEOUT...248
LINK_SCHEMA...248
MEMORY_FREE..248
MEMORY_USED...248
NEXTVAL...249

14 of 347

NULLIF..249
NVL2...249
READONLY..250
ROWNUM..250
SCOPE_IDENTITY..250
SESSION_ID..250
SET...251
TABLE...251
TRANSACTION_ID..251
TRUNCATE_VALUE...252
UNNEST..252
USER...252
H2VERSION...252

JSON Functions...253
JSON_OBJECT..253
JSON_ARRAY...253

Aggregate Functions...254
Index..254

General Aggregate Functions..254
Ordered Aggregate Functions..254
Hypothetical Set Functions..254
Inverse Distribution Functions...254
JSON Aggregate Functions..255

General Aggregate Functions..255
AVG...255
MAX..255
MIN...255
SUM..256
EVERY...256
ANY...256
COUNT..257
STDDEV_POP...257
STDDEV_SAMP...257
VAR_POP...257
VAR_SAMP...258
BIT_AND...258
BIT_OR...258
SELECTIVITY...259
ENVELOPE...259

Ordered Aggregate Functions...259
LISTAGG..259
ARRAY_AGG..260

Hypothetical Set Functions...260
RANK aggregate...260
DENSE_RANK aggregate...261

15 of 347

PERCENT_RANK aggregate...261
CUME_DIST aggregate...262

Inverse Distribution Functions..262
PERCENTILE_CONT..262
PERCENTILE_DISC...262
MEDIAN...263
MODE..263

JSON Aggregate Functions...264
JSON_OBJECTAGG...264
JSON_ARRAYAGG...264

Window Functions...265
Index..265

Row Number Function..265
Rank Functions..265
Lead or Lag Functions..265
Nth Value Functions...265
Other Window Functions...265

Row Number Function..265
ROW_NUMBER...265

Rank Functions..266
RANK...266
DENSE_RANK...266
PERCENT_RANK...267
CUME_DIST...267

Lead or Lag Functions..268
LEAD...268
LAG...268

Nth Value Functions...269
FIRST_VALUE..269
LAST_VALUE..269
NTH_VALUE...270

Other Window Functions..270
NTILE..270
RATIO_TO_REPORT...271

Data Types...272
Index..272
INT...272
BOOLEAN..273
TINYINT...273
SMALLINT...273
BIGINT...273
IDENTITY..274
DECIMAL...274
DOUBLE..274
REAL...275

16 of 347

TIME...275
TIME WITH TIME ZONE...275
DATE..276
TIMESTAMP..276
TIMESTAMP WITH TIME ZONE...277
BINARY...278
OTHER..278
VARCHAR..279
VARCHAR_IGNORECASE..279
CHAR..279
BLOB..280
CLOB..280
UUID..281
ARRAY..281
ENUM...282
GEOMETRY...282
JSON..283
INTERVAL...284
Interval Data Types...284

INTERVAL YEAR...284
INTERVAL MONTH...284
INTERVAL DAY...285
INTERVAL HOUR..285
INTERVAL MINUTE...285
INTERVAL SECOND..286
INTERVAL YEAR TO MONTH...286
INTERVAL DAY TO HOUR...286
INTERVAL DAY TO MINUTE..287
INTERVAL DAY TO SECOND..287
INTERVAL HOUR TO MINUTE...287
INTERVAL HOUR TO SECOND...288
INTERVAL MINUTE TO SECOND..288

SQL Grammar...289
Index..289

Literals..289
Datetime fields...290
Other Grammar..290

Literals..291
Value...291
Array...292
Boolean...292
Bytes...292
Date..292
Date and time..293
Decimal...293

17 of 347

Dollar Quoted String...293
Hex Number..294
Int...294
JSON...294
Long..294
Null...295
Number...295
Numeric...295
String..295
Time..296
Time with time zone...296
Timestamp...296
Timestamp with time zone..296
Interval...297
INTERVAL YEAR...297
INTERVAL MONTH...297
INTERVAL DAY...298
INTERVAL HOUR..298
INTERVAL MINUTE...298
INTERVAL SECOND..298
INTERVAL YEAR TO MONTH...298
INTERVAL DAY TO HOUR...299
INTERVAL DAY TO MINUTE..299
INTERVAL DAY TO SECOND..299
INTERVAL HOUR TO MINUTE...299
INTERVAL HOUR TO SECOND...300
INTERVAL MINUTE TO SECOND..300

Datetime fields..300
Datetime field..300
Year field...301
Month field..301
Day of month field...301
Hour field..301
Minute field..301
Second field...302
Millisecond field..302
Microsecond field...302
Nanosecond field..302
Timezone hour field..303
Timezone minute field..303
Timezone second field..303
Day of week field...303
ISO week year field..304
ISO day of week field...304
Week of year field..304

18 of 347

ISO week of year field..304
Quarter field..305
Day of year field...305
Epoch field...305

Other Grammar...305
Alias..305
And Condition..306
Case..306
Case When..306
Cipher...306
Column Definition...307
Comments...308
Compare..308
Condition...308
Condition Right Hand Side..309
Constraint..310
Constraint Name Definition...311
Csv Options...311
Data Change Delta Table..312
Data Type..312
Digit..313
Expression...313
Factor..313
Grouping element...313
Hex...314
Index Column..314
Insert columns and source..314
Insert values..315
Join specification..315
Merge when clause..315
Merge when matched clause...315
Merge when not matched clause...316
Name..316
Operand..317
Order..317
Query..317
Quoted Name..317
Referential Constraint...318
Referential Action...318
Script Compression Encryption..318
Row value expression...319
Select Expression...319
Sequence value expression...319
Sequence options...320
Sequence option..320

19 of 347

Set clause list...321
Summand..321
Table Expression..321
Within group specification...322
Wildcard expression...322
Window name or specification...322
Window specification..323
Window frame...323
Window frame preceding..324
Window frame bound...325
Term...325
Time zone..325
Column..326

System Tables..327
Information Schema..327

CATALOGS...327
COLLATIONS...327
COLUMNS..327
COLUMN_PRIVILEGES..327
CONSTANTS..327
CONSTRAINTS...328
CROSS_REFERENCES...328
DOMAINS..328
FUNCTION_ALIASES...328
FUNCTION_COLUMNS..328
HELP...328
INDEXES..328
IN_DOUBT...329
KEY_COLUMN_USAGE..329
LOCKS...329
QUERY_STATISTICS...329
REFERENTIAL_CONSTRAINTS...329
RIGHTS...329
ROLES...329
SCHEMATA..329
SEQUENCES...330
SESSIONS..330
SESSION_STATE..330
SETTINGS..330
SYNONYMS..330
TABLES...330
TABLE_CONSTRAINTS..330
TABLE_PRIVILEGES..330
TABLE_TYPES..331
TRIGGERS...331

20 of 347

TYPE_INFO..331
USERS...331
VIEWS...331

Range Table..331
Build..333

Portability..333
Environment..333
Building the Software...333
Build Targets...334

Using Apache Lucene...334
Using Maven 2...334

Using a Central Repository..334
Maven Plugin to Start and Stop the TCP Server..335
Using Snapshot Version..335

Using Eclipse...335
Translating..336
Submitting Source Code Changes...336
Reporting Problems or Requests...337
Automated Build..338
Generating Railroad Diagrams..338

History and Roadmap..339
Change Log...339
Roadmap..339
History of this Database Engine..339
Why Java..339
Supporters..340

Frequently Asked Questions...343
I Have a Problem or Feature Request..343
Are there Known Bugs? When is the Next Release?..................................343
Is this Database Engine Open Source?...344
Is Commercial Support Available?..344
How to Create a New Database?...344
How to Connect to a Database?..344
Where are the Database Files Stored?...344
What is the Size Limit (Maximum Size) of a Database?.............................345
Is it Reliable?...345
Why is Opening my Database Slow?..346
My Query is Slow...346
H2 is Very Slow..346
Column Names are Incorrect?...347
Float is Double?...347
How to Translate this Project?...347
How to Contribute to this Project?...347

21 of 347

Quickstart
Embedding H2 in an Application
The H2 Console Application

Embedding H2 in an Application

This database can be used in embedded mode, or in server mode. To use it in
embedded mode, you need to:

• Add the h2*.jar to the classpath (H2 does not have any dependencies)
• Use the JDBC driver class: org.h2.Driver
• The database URL jdbc:h2:~/test opens the database test in your user

home directory
• A new database is automatically created

The H2 Console Application

The Console lets you access a SQL database using a browser interface.

If you don't have Windows XP, or if something does not work as expected, please
see the detailed description in the Tutorial.

Step-by-Step

Installation

Install the software using the Windows Installer (if you did not yet do that).

22 of 347

Start the Console

Click [Start], [All Programs], [H2], and [H2 Console (Command Line)]:

A new console window appears:

Also, a new browser page should open with the URL http://localhost:8082. You
may get a security warning from the firewall. If you don't want other computers in
the network to access the database on your machine, you can let the firewall
block these connections. Only local connections are required at this time.

Login

Select [Generic H2] and click [Connect]:

You are now logged in.

23 of 347

http://localhost:8082/

Sample

Click on the [Sample SQL Script]:

The SQL commands appear in the command area.

24 of 347

Execute

Click [Run]

On the left side, a new entry TEST is added below the database icon. The

25 of 347

operations and results of the statements are shown below the script.

Disconnect

Click on [Disconnect]:

to close the connection.

End

Close the console window. For more information, see the Tutorial.

26 of 347

Installation
Requirements
Supported Platforms
Installing the Software
Directory Structure

Requirements

To run this database, the following software stack is known to work. Other
software most likely also works, but is not tested as much.

Database Engine

• Windows XP or Vista, Mac OS X, or Linux
• Oracle Java 7 or newer
• Recommended Windows file system: NTFS (FAT32 only supports files up to

4 GB)

H2 Console

• Mozilla Firefox

Supported Platforms

As this database is written in Java, it can run on many different platforms. It is
tested with Java 7, 8, and 11. All major operating systems (Windows, Mac OS X,
Linux, ...) are supported.

Installing the Software

To install the software, run the installer or unzip it to a directory of your choice.

Directory Structure

After installing, you should get the following directory structure:

Directory Contents

bin JAR and batch files

27 of 347

docs Documentation

docs/html HTML pages

docs/javadoc Javadoc files

ext External dependencies (downloaded when building)

service Tools to run the database as a Windows Service

src Source files

src/docsrc Documentation sources

src/installer Installer, shell, and release build script

src/main Database engine source code

src/test Test source code

src/tools Tools and database adapters source code

28 of 347

Tutorial
Starting and Using the H2 Console
Special H2 Console Syntax
Settings of the H2 Console
Connecting to a Database using JDBC
Creating New Databases
Using the Server
Using Hibernate
Using TopLink and Glassfish
Using EclipseLink
Using Apache ActiveMQ
Using H2 within NetBeans
Using H2 with jOOQ
Using Databases in Web Applications
Android
CSV (Comma Separated Values) Support
Upgrade, Backup, and Restore
Command Line Tools
The Shell Tool
Using OpenOffice Base
Java Web Start / JNLP
Using a Connection Pool
Fulltext Search
User-Defined Variables
Date and Time
Using Spring
OSGi
Java Management Extension (JMX)

Starting and Using the H2 Console

The H2 Console application lets you access a database using a browser. This can
be a H2 database, or another database that supports the JDBC API.

29 of 347

This is a client/server application, so both a server and a client (a browser) are
required to run it.

Depending on your platform and environment, there are multiple ways to start the
H2 Console:

OS Start

Windows

Click [Start], [All Programs], [H2], and [H2 Console (Command Line)]

An icon will be added to the system tray:
If you don't get the window and the system tray icon, then maybe
Java is not installed correctly (in this case, try another way to start the
application). A browser window should open and point to the login
page at http://localhost:8082.

Windows

Open a file browser, navigate to h2/bin, and double click on h2.bat.
A console window appears. If there is a problem, you will see an error
message in this window. A browser window will open and point to the
login page (URL: http://localhost:8082).

Any
Double click on the h2*.jar file. This only works if the .jar suffix is
associated with Java.

Any

Open a console window, navigate to the directory h2/bin, and type:

java -jar h2*.jar

If the console startup procedure is unable to locate the default system web
browser, an error message may be displayed. It is possible to explicitly tell H2
which program/script to use when opening a system web browser by setting
either the BROWSER environment variable, or the h2.browser java property.

Firewall

If you start the server, you may get a security warning from the firewall (if you
have installed one). If you don't want other computers in the network to access
the application on your machine, you can let the firewall block those connections.
The connection from the local machine will still work. Only if you want other
computers to access the database on this computer, you need allow remote
connections in the firewall.

It has been reported that when using Kaspersky 7.0 with firewall, the H2 Console
is very slow when connecting over the IP address. A workaround is to connect
using 'localhost'.

30 of 347

A small firewall is already built into the server: other computers may not connect
to the server by default. To change this, go to 'Preferences' and select 'Allow
connections from other computers'.

Testing Java

To find out which version of Java is installed, open a command prompt and type:

java -version

If you get an error message, you may need to add the Java binary directory to
the path environment variable.

Error Message 'Port may be in use'

You can only start one instance of the H2 Console, otherwise you will get the
following error message: "The Web server could not be started. Possible cause:
another server is already running...". It is possible to start multiple console
applications on the same computer (using different ports), but this is usually not
required as the console supports multiple concurrent connections.

Using another Port

If the default port of the H2 Console is already in use by another application, then
a different port needs to be configured. The settings are stored in a properties
file. For details, see Settings of the H2 Console. The relevant entry is webPort.

If no port is specified for the TCP and PG servers, each service will try to listen on
its default port. If the default port is already in use, a random port is used.

Connecting to the Server using a Browser

If the server started successfully, you can connect to it using a web browser.
Javascript needs to be enabled. If you started the server on the same computer
as the browser, open the URL http://localhost:8082. If you want to connect to the
application from another computer, you need to provide the IP address of the
server, for example: http://192.168.0.2:8082. If you enabled TLS on the server
side, the URL needs to start with https://.

31 of 347

Multiple Concurrent Sessions

Multiple concurrent browser sessions are supported. As that the database objects
reside on the server, the amount of concurrent work is limited by the memory
available to the server application.

Login

At the login page, you need to provide connection information to connect to a
database. Set the JDBC driver class of your database, the JDBC URL, user name,
and password. If you are done, click [Connect].

You can save and reuse previously saved settings. The settings are stored in a
properties file (see Settings of the H2 Console).

Error Messages

Error messages in are shown in red. You can show/hide the stack trace of the
exception by clicking on the message.

Adding Database Drivers

To register additional JDBC drivers (MySQL, PostgreSQL, HSQLDB,...), add the jar
file names to the environment variables H2DRIVERS or CLASSPATH. Example
(Windows): to add the HSQLDB JDBC driver C:\Programs\hsqldb\lib\hsqldb.jar,
set the environment variable H2DRIVERS to C:\Programs\hsqldb\lib\hsqldb.jar.

Multiple drivers can be set; entries need to be separated by ; (Windows) or :
(other operating systems). Spaces in the path names are supported. The settings
must not be quoted.

Using the H2 Console

The H2 Console application has three main panels: the toolbar on top, the tree on
the left, and the query/result panel on the right. The database objects (for
example, tables) are listed on the left. Type a SQL command in the query panel
and click [Run]. The result appears just below the command.

Inserting Table Names or Column Names

To insert table and column names into the script, click on the item in the tree. If
you click on a table while the query is empty, then SELECT * FROM ... is added.
While typing a query, the table that was used is expanded in the tree. For

32 of 347

example if you type SELECT * FROM TEST T WHERE T. then the table TEST is
expanded.

Disconnecting and Stopping the Application

To log out of the database, click [Disconnect] in the toolbar panel. However, the
server is still running and ready to accept new sessions.

To stop the server, right click on the system tray icon and select [Exit]. If you
don't have the system tray icon, navigate to [Preferences] and click [Shutdown],
press [Ctrl]+[C] in the console where the server was started (Windows), or close
the console window.

Special H2 Console Syntax

The H2 Console supports a few built-in commands. Those are interpreted within
the H2 Console, so they work with any database. Built-in commands need to be at
the beginning of a statement (before any remarks), otherwise they are not parsed
correctly. If in doubt, add ; before the command.

Command(s) Description

@autocommit_true;
@autocommit_false;

Enable or disable autocommit.

@cancel; Cancel the currently running statement.

@columns null null TEST;
@index_info null null TEST;
@tables;
@tables null null TEST;

Call the corresponding DatabaseMetaData.get
method. Patterns are case sensitive (usually
identifiers are uppercase). For information about
the parameters, see the Javadoc documentation.
Missing parameters at the end of the line are set
to null. The complete list of metadata commands
is: @attributes, @best_row_identifier, @catalogs,
@columns, @column_privileges,
@cross_references, @exported_keys,
@imported_keys, @index_info, @primary_keys,
@procedures, @procedure_columns, @schemas,
@super_tables, @super_types, @tables,
@table_privileges, @table_types, @type_info,
@udts, @version_columns

@edit select * from test; Use an updatable result set.

@generated insert into test()
values();

Show the result of Statement.getGeneratedKeys().
Names or one-based indexes of required columns

33 of 347

@generated(1) insert into te
st() values();
@generated(ID,
"TIMESTAMP") insert into te
st() values();

can be optionally specified.

@history; List the command history.

@info;
Display the result of various Connection and
DatabaseMetaData methods.

@list select * from test;
Show the result set in list format (each column on
its own line, with row numbers).

@loop 1000
select ?, ?/*rnd*/;
@loop 1000 @statement
select ?;

Run the statement this many times. Parameters
(?) are set using a loop from 0 up to x - 1.
Random values are used for each ?/*rnd*/. A
Statement object is used instead of a
PreparedStatement if @statement is used. Result
sets are read until ResultSet.next() returns false.
Timing information is printed.

@maxrows 20; Set the maximum number of rows to display.

@memory;
Show the used and free memory. This will call
System.gc().

@meta select 1;
List the ResultSetMetaData after running the
query.

@parameter_meta select ?;
Show the result of the
PreparedStatement.getParameterMetaData() calls.
The statement is not executed.

@prof_start;
call hash('SHA256', '', 10000
00);
@prof_stop;

Start/stop the built-in profiling tool. The top 3
stack traces of the statement(s) between start and
stop are listed (if there are 3).

@prof_start;
@sleep 10;
@prof_stop;

Sleep for a number of seconds. Used to profile a
long running query or operation that is running in
another session (but in the same process).

@transaction_isolation;
@transaction_isolation 2;

Display (without parameters) or change (with
parameters 1, 2, 4, 8) the transaction isolation
level.

34 of 347

Settings of the H2 Console

The settings of the H2 Console are stored in a configuration file called
.h2.server.properties in you user home directory. For Windows installations, the
user home directory is usually C:\Documents and Settings\[username] or
C:\Users\[username]. The configuration file contains the settings of the
application and is automatically created when the H2 Console is first started.
Supported settings are:

• webAllowOthers: allow other computers to connect.
• webPort: the port of the H2 Console
• webSSL: use encrypted TLS (HTTPS) connections.
• webAdminPassword: password to access preferences and tools of H2

Console.

In addition to those settings, the properties of the last recently used connection
are listed in the form <number>=<name>|<driver>|<url>|<user> using the
escape character \. Example: 1=Generic H2 (Embedded)|org.h2.Driver|
jdbc\:h2\:~/test|sa

Connecting to a Database using JDBC

To connect to a database, a Java application first needs to load the database
driver, and then get a connection. A simple way to do that is using the following
code:

import java.sql.*;
public class Test {
 public static void main(String[] a)
 throws Exception {
 Connection conn = DriverManager.
 getConnection("jdbc:h2:~/test", "sa", "");
 // add application code here
 conn.close();
 }
}

This code opens a connection (using DriverManager.getConnection()). The driver
name is "org.h2.Driver". The database URL always needs to start with jdbc:h2: to
be recognized by this database. The second parameter in the getConnection() call
is the user name (sa for System Administrator in this example). The third
parameter is the password. In this database, user names are not case sensitive,
but passwords are.

35 of 347

Creating New Databases

By default, if the database specified in the embedded URL does not yet exist, a
new (empty) database is created automatically. The user that created the
database automatically becomes the administrator of this database.

Auto-creation of databases can be disabled, see Opening a Database Only if it
Already Exists.

H2 Console does not allow creation of databases unless a browser window is
opened by Console during its startup or from its icon in the system tray and
remote access is not enabled. A context menu of the tray icon can also be used to
create a new database.

You can also create a new local database from a command line with a Shell tool:

> java -cp h2-*.jar org.h2.tools.Shell

Welcome to H2 Shell
Exit with Ctrl+C
[Enter] jdbc:h2:mem:2
URL jdbc:h2:./path/to/database
[Enter] org.h2.Driver
Driver
[Enter] sa
User your_username
Password (hidden)
Type the same password again to confirm database creation.
Password (hidden)
Connected

sql> quit
Connection closed

By default remote creation of databases from a TCP connection or a web interface
is not allowed. It's not recommended to enable remote creation of databases due
to security reasons. User who creates a new database becomes its administrator
and therefore gets the same access to your JVM as H2 has and the same access
to your operating system as Java and your system account allows. It's
recommended to create all databases locally using an embedded URL, local H2
Console, or the Shell tool.

If you really need to allow remote database creation, you can pass -ifNotExists
parameter to TCP, PG, or Web servers (but not to the Console tool). Its
combination with -tcpAllowOthers, -pgAllowOthers, or -webAllowOthers effectively
creates a remote security hole in your system, if you use it, always guard your

36 of 347

ports with a firewall or some other solution and use such combination of settings
only in trusted networks.

H2 Servlet also supports such option. When you use it always protect the servlet
with security constraints, see Using the H2 Console Servlet for example; don't
forget to uncomment and adjust security configuration for your needs.

Using the Server

H2 currently supports three server: a web server (for the H2 Console), a TCP
server (for client/server connections) and an PG server (for PostgreSQL clients).
Please note that only the web server supports browser connections. The servers
can be started in different ways, one is using the Server tool. Starting the server
doesn't open a database - databases are opened as soon as a client connects.

Starting the Server Tool from Command Line

To start the Server tool from the command line with the default settings, run:

java -cp h2*.jar org.h2.tools.Server

This will start the tool with the default options. To get the list of options and
default values, run:

java -cp h2*.jar org.h2.tools.Server -?

There are options available to use other ports, and start or not start parts.

Connecting to the TCP Server

To remotely connect to a database using the TCP server, use the following driver
and database URL:

• JDBC driver class: org.h2.Driver
• Database URL: jdbc:h2:tcp://localhost/~/test

For details about the database URL, see also in Features. Please note that you
can't connection with a web browser to this URL. You can only connect using a H2
client (over JDBC).

Starting the TCP Server within an Application

Servers can also be started and stopped from within an application. Sample code:

37 of 347

import org.h2.tools.Server;
...
// start the TCP Server
Server server = Server.createTcpServer(args).start();
...
// stop the TCP Server
server.stop();

Stopping a TCP Server from Another Process

The TCP server can be stopped from another process. To stop the server from the
command line, run:

java org.h2.tools.Server -tcpShutdown tcp://localhost:9092 -tcpPassword
password

To stop the server from a user application, use the following code:

org.h2.tools.Server.shutdownTcpServer("tcp://localhost:9092", "password",
false, false);

This function will only stop the TCP server. If other server were started in the
same process, they will continue to run. To avoid recovery when the databases
are opened the next time, all connections to the databases should be closed
before calling this method. To stop a remote server, remote connections must be
enabled on the server. Shutting down a TCP server is protected using the option
-tcpPassword (the same password must be used to start and stop the TCP
server).

Using Hibernate

This database supports Hibernate version 3.1 and newer. You can use the
HSQLDB Dialect, or the native H2 Dialect.

When using Hibernate, try to use the H2Dialect if possible. When using the
H2Dialect, compatibility modes such as MODE=MySQL are not supported. When
using such a compatibility mode, use the Hibernate dialect for the corresponding
database instead of the H2Dialect; but please note H2 does not support all
features of all databases.

38 of 347

Using TopLink and Glassfish

To use H2 with Glassfish (or Sun AS), set the Datasource Classname to
org.h2.jdbcx.JdbcDataSource. You can set this in the GUI at Application Server -
Resources - JDBC - Connection Pools, or by editing the file sun-resources.xml: at
element jdbc-connection-pool, set the attribute datasource-classname to
org.h2.jdbcx.JdbcDataSource.

The H2 database is compatible with HSQLDB and PostgreSQL. To take advantage
of H2 specific features, use the H2Platform. The source code of this platform is
included in H2 at
src/tools/oracle/toplink/essentials/platform/database/DatabasePlatform.java.txt.
You will need to copy this file to your application, and rename it to .java. To
enable it, change the following setting in persistence.xml:

<property
 name="toplink.target-database"
 value="oracle.toplink.essentials.platform.database.H2Platform"/>

In old versions of Glassfish, the property name is toplink.platform.class.name.

To use H2 within Glassfish, copy the h2*.jar to the directory
glassfish/glassfish/lib.

Using EclipseLink

To use H2 in EclipseLink, use the platform class
org.eclipse.persistence.platform.database.H2Platform. If this platform is not
available in your version of EclipseLink, you can use the OraclePlatform instead in
many case. See also H2Platform.

Using Apache ActiveMQ

When using H2 as the backend database for Apache ActiveMQ, please use the
TransactDatabaseLocker instead of the default locking mechanism. Otherwise the
database file will grow without bounds. The problem is that the default locking
mechanism uses an uncommitted UPDATE transaction, which keeps the
transaction log from shrinking (causes the database file to grow). Instead of using
an UPDATE statement, the TransactDatabaseLocker uses SELECT ... FOR UPDATE
which is not problematic. To use it, change the ApacheMQ configuration element
<jdbcPersistenceAdapter> element, property
databaseLocker="org.apache.activemq.store.jdbc.adapter.TransactDatabaseLocke
r". However, using the MVCC mode will again result in the same problem.

39 of 347

http://wiki.eclipse.org/EclipseLink/Development/Incubator/Extensions/H2Platform

Therefore, please do not use the MVCC mode in this case. Another (more
dangerous) solution is to set useDatabaseLock to false.

Using H2 within NetBeans

There is a known issue when using the Netbeans SQL Execution Window: before
executing a query, another query in the form SELECT COUNT(*) FROM <query>
is run. This is a problem for queries that modify state, such as SELECT NEXT
VALUE FOR SEQ. In this case, two sequence values are allocated instead of just
one.

Using H2 with jOOQ

jOOQ adds a thin layer on top of JDBC, allowing for type-safe SQL construction,
including advanced SQL, stored procedures and advanced data types. jOOQ takes
your database schema as a base for code generation. If this is your example
schema:

CREATE TABLE USER (ID INT, NAME VARCHAR(50));

then run the jOOQ code generator on the command line using this command:

java -cp jooq.jar;jooq-meta.jar;jooq-codegen.jar;h2-1.4.199.jar;.
org.jooq.util.GenerationTool /codegen.xml

...where codegen.xml is on the classpath and contains this information

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration xmlns="http://www.jooq.org/xsd/jooq-codegen-3.11.0.xsd">
 <jdbc>
 <driver>org.h2.Driver</driver>
 <url>jdbc:h2:~/test</url>
 <user>sa</user>
 <password></password>
 </jdbc>
 <generator>
 <database>
 <includes>.*</includes>
 <excludes></excludes>
 <inputSchema>PUBLIC</inputSchema>
 </database>
 <target>
 <packageName>org.jooq.h2.generated</packageName>

40 of 347

 <directory>./src</directory>
 </target>
 </generator>
</configuration>

Using the generated source, you can query the database as follows:

DSLContext dsl = DSL.using(connection);
Result<UserRecord> result =
dsl.selectFrom(USER)
 .where(NAME.like("Johnny%"))
 .orderBy(ID)
 .fetch();

See more details on jOOQ Homepage and in the jOOQ Tutorial

Using Databases in Web Applications

There are multiple ways to access a database from within web applications. Here
are some examples if you use Tomcat or JBoss.

Embedded Mode

The (currently) simplest solution is to use the database in the embedded mode,
that means open a connection in your application when it starts (a good solution
is using a Servlet Listener, see below), or when a session starts. A database can
be accessed from multiple sessions and applications at the same time, as long as
they run in the same process. Most Servlet Containers (for example Tomcat) are
just using one process, so this is not a problem (unless you run Tomcat in
clustered mode). Tomcat uses multiple threads and multiple classloaders. If
multiple applications access the same database at the same time, you need to put
the database jar in the shared/lib or server/lib directory. It is a good idea to open
the database when the web application starts, and close it when the web
application stops. If using multiple applications, only one (any) of them needs to
do that. In the application, an idea is to use one connection per Session, or even
one connection per request (action). Those connections should be closed after
use if possible (but it's not that bad if they don't get closed).

Server Mode

The server mode is similar, but it allows you to run the server in another process.

41 of 347

https://www.jooq.org/tutorial
https://www.jooq.org/

Using a Servlet Listener to Start and Stop a Database

Add the h2*.jar file to your web application, and add the following snippet to your
web.xml file (between the context-param and the filter section):

<listener>
 <listener-class>org.h2.server.web.DbStarter</listener-class>
</listener>

For details on how to access the database, see the file DbStarter.java. By default
this tool opens an embedded connection using the database URL jdbc:h2:~/test,
user name sa, and password sa. If you want to use this connection within your
servlet, you can access as follows:

Connection conn = getServletContext().getAttribute("connection");

DbStarter can also start the TCP server, however this is disabled by default. To
enable it, use the parameter db.tcpServer in the file web.xml. Here is the
complete list of options. These options need to be placed between the description
tag and the listener / filter tags:

<context-param>
 <param-name>db.url</param-name>
 <param-value>jdbc:h2:~/test</param-value>
</context-param>
<context-param>
 <param-name>db.user</param-name>
 <param-value>sa</param-value>
</context-param>
<context-param>
 <param-name>db.password</param-name>
 <param-value>sa</param-value>
</context-param>
<context-param>
 <param-name>db.tcpServer</param-name>
 <param-value>-tcpAllowOthers</param-value>
</context-param>

When the web application is stopped, the database connection will be closed
automatically. If the TCP server is started within the DbStarter, it will also be
stopped automatically.

42 of 347

Using the H2 Console Servlet

The H2 Console is a standalone application and includes its own web server, but it
can be used as a servlet as well. To do that, include the h2*.jar file in your
application, and add the following configuration to your web.xml:

<servlet>
 <servlet-name>H2Console</servlet-name>
 <servlet-class>org.h2.server.web.WebServlet</servlet-class>
 <!--
 <init-param>
 <param-name>webAllowOthers</param-name>
 <param-value></param-value>
 </init-param>
 <init-param>
 <param-name>trace</param-name>
 <param-value></param-value>
 </init-param>
 -->
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>H2Console</servlet-name>
 <url-pattern>/console/*</url-pattern>
</servlet-mapping>
<!--
<security-role>
 <role-name>admin</role-name>
</security-role>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>H2 Console</web-resource-name>
 <url-pattern>/console/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
</security-constraint>
-->

For details, see also src/tools/WEB-INF/web.xml.

To create a web application with just the H2 Console, run the following command:

build warConsole

43 of 347

Android

You can use this database on an Android device (using the Dalvik VM) instead of
or in addition to SQLite. So far, only very few tests and benchmarks were run, but
it seems that performance is similar to SQLite, except for opening and closing a
database, which is not yet optimized in H2 (H2 takes about 0.2 seconds, and
SQLite about 0.02 seconds). Read operations seem to be a bit faster than SQLite,
and write operations seem to be slower. So far, only very few tests have been
run, and everything seems to work as expected. Fulltext search was not yet
tested, however the native fulltext search should work.

Reasons to use H2 instead of SQLite are:

• Full Unicode support including UPPER() and LOWER().
• Streaming API for BLOB and CLOB data.
• Fulltext search.
• Multiple connections.
• User defined functions and triggers.
• Database file encryption.
• Reading and writing CSV files (this feature can be used outside the database

as well).
• Referential integrity and check constraints.
• Better data type and SQL support.
• In-memory databases, read-only databases, linked tables.
• Better compatibility with other databases which simplifies porting

applications.
• Possibly better performance (so far for read operations).
• Server mode (accessing a database on a different machine over TCP/IP).

Currently only the JDBC API is supported (it is planned to support the Android
database API in future releases). Both the regular H2 jar file and the smaller
h2small-*.jar can be used. To create the smaller jar file, run the command
./build.sh jarSmall (Linux / Mac OS) or build.bat jarSmall (Windows).

The database files needs to be stored in a place that is accessible for the
application. Example:

String url = "jdbc:h2:/data/data/" +
 "com.example.hello" +
 "/data/hello" +
 ";FILE_LOCK=FS" +
 ";PAGE_SIZE=1024" +
 ";CACHE_SIZE=8192";
conn = DriverManager.getConnection(url);
...

44 of 347

Limitations: Using a connection pool is currently not supported, because the
required javax.sql. classes are not available on Android.

CSV (Comma Separated Values) Support

The CSV file support can be used inside the database using the functions
CSVREAD and CSVWRITE, or it can be used outside the database as a standalone
tool.

Reading a CSV File from Within a Database

A CSV file can be read using the function CSVREAD. Example:

SELECT * FROM CSVREAD('test.csv');

Please note for performance reason, CSVREAD should not be used inside a join.
Instead, import the data first (possibly into a temporary table), create the
required indexes if necessary, and then query this table.

Importing Data from a CSV File

A fast way to load or import data (sometimes called 'bulk load') from a CSV file is
to combine table creation with import. Optionally, the column names and data
types can be set when creating the table. Another option is to use INSERT
INTO ... SELECT.

CREATE TABLE TEST AS SELECT * FROM CSVREAD('test.csv');
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255))
 AS SELECT * FROM CSVREAD('test.csv');

Writing a CSV File from Within a Database

The built-in function CSVWRITE can be used to create a CSV file from a query.
Example:

CREATE TABLE TEST(ID INT, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello'), (2, 'World');
CALL CSVWRITE('test.csv', 'SELECT * FROM TEST');

45 of 347

Writing a CSV File from a Java Application

The Csv tool can be used in a Java application even when not using a database at
all. Example:

import java.sql.*;
import org.h2.tools.Csv;
import org.h2.tools.SimpleResultSet;
public class TestCsv {
 public static void main(String[] args) throws Exception {
 SimpleResultSet rs = new SimpleResultSet();
 rs.addColumn("NAME", Types.VARCHAR, 255, 0);
 rs.addColumn("EMAIL", Types.VARCHAR, 255, 0);
 rs.addRow("Bob Meier", "bob.meier@abcde.abc");
 rs.addRow("John Jones", "john.jones@abcde.abc");
 new Csv().write("data/test.csv", rs, null);
 }
}

Reading a CSV File from a Java Application

It is possible to read a CSV file without opening a database. Example:

import java.sql.*;
import org.h2.tools.Csv;
public class TestCsv {
 public static void main(String[] args) throws Exception {
 ResultSet rs = new Csv().read("data/test.csv", null, null);
 ResultSetMetaData meta = rs.getMetaData();
 while (rs.next()) {
 for (int i = 0; i < meta.getColumnCount(); i++) {
 System.out.println(
 meta.getColumnLabel(i + 1) + ": " +
 rs.getString(i + 1));
 }
 System.out.println();
 }
 rs.close();
 }
}

46 of 347

Upgrade, Backup, and Restore

Database Upgrade

The recommended way to upgrade from one version of the database engine to
the next version is to create a backup of the database (in the form of a SQL
script) using the old engine, and then execute the SQL script using the new
engine.

Backup using the Script Tool

The recommended way to backup a database is to create a compressed SQL
script file. This will result in a small, human readable, and database version
independent backup. Creating the script will also verify the checksums of the
database file. The Script tool is ran as follows:

java org.h2.tools.Script -url jdbc:h2:~/test -user sa -script test.zip -options
compression zip

It is also possible to use the SQL command SCRIPT to create the backup of the
database. For more information about the options, see the SQL command
SCRIPT. The backup can be done remotely, however the file will be created on
the server side. The built in FTP server could be used to retrieve the file from the
server.

Restore from a Script

To restore a database from a SQL script file, you can use the RunScript tool:

java org.h2.tools.RunScript -url jdbc:h2:~/test -user sa -script test.zip -options
compression zip

For more information about the options, see the SQL command RUNSCRIPT. The
restore can be done remotely, however the file needs to be on the server side.
The built in FTP server could be used to copy the file to the server. It is also
possible to use the SQL command RUNSCRIPT to execute a SQL script. SQL script
files may contain references to other script files, in the form of RUNSCRIPT
commands. However, when using the server mode, the references script files
need to be available on the server side.

47 of 347

Online Backup

The BACKUP SQL statement and the Backup tool both create a zip file with the
database file. However, the contents of this file are not human readable.

The resulting backup is transactionally consistent, meaning the consistency and
atomicity rules apply.

BACKUP TO 'backup.zip'

The Backup tool (org.h2.tools.Backup) can not be used to create a online backup;
the database must not be in use while running this program.

Creating a backup by copying the database files while the database is running is
not supported, except if the file systems support creating snapshots. With other
file systems, it can't be guaranteed that the data is copied in the right order.

Command Line Tools

This database comes with a number of command line tools. To get more
information about a tool, start it with the parameter '-?', for example:

java -cp h2*.jar org.h2.tools.Backup -?

The command line tools are:

• Backup creates a backup of a database.
• ChangeFileEncryption allows changing the file encryption password or

algorithm of a database.
• Console starts the browser based H2 Console.
• ConvertTraceFile converts a .trace.db file to a Java application and SQL

script.
• CreateCluster creates a cluster from a standalone database.
• DeleteDbFiles deletes all files belonging to a database.
• Recover helps recovering a corrupted database.
• Restore restores a backup of a database.
• RunScript runs a SQL script against a database.
• Script allows converting a database to a SQL script for backup or migration.
• Server is used in the server mode to start a H2 server.
• Shell is a command line database tool.

The tools can also be called from an application by calling the main or another
public method. For details, see the Javadoc documentation.

48 of 347

The Shell Tool

The Shell tool is a simple interactive command line tool. To start it, type:

java -cp h2*.jar org.h2.tools.Shell

You will be asked for a database URL, JDBC driver, user name, and password.
The connection setting can also be set as command line parameters. After
connecting, you will get the list of options. The built-in commands don't need to
end with a semicolon, but SQL statements are only executed if the line ends with
a semicolon ;. This allows to enter multi-line statements:

sql> select * from test
...> where id = 0;

By default, results are printed as a table. For results with many column, consider
using the list mode:

sql> list
Result list mode is now on
sql> select * from test;
ID : 1
NAME: Hello

ID : 2
NAME: World
(2 rows, 0 ms)

Using OpenOffice Base

OpenOffice.org Base supports database access over the JDBC API. To connect to
a H2 database using OpenOffice Base, you first need to add the JDBC driver to
OpenOffice. The steps to connect to a H2 database are:

• Start OpenOffice Writer, go to [Tools], [Options]
• Make sure you have selected a Java runtime environment in

OpenOffice.org / Java
• Click [Class Path...], [Add Archive...]
• Select your h2 jar file (location is up to you, could be wherever you choose)
• Click [OK] (as much as needed), stop OpenOffice (including the

Quickstarter)
• Start OpenOffice Base
• Connect to an existing database; select [JDBC]; [Next]
• Example datasource URL: jdbc:h2:~/test

49 of 347

• JDBC driver class: org.h2.Driver

Now you can access the database stored in the current users home directory.

To use H2 in NeoOffice (OpenOffice without X11):

• In NeoOffice, go to [NeoOffice], [Preferences]
• Look for the page under [NeoOffice], [Java]
• Click [Class Path], [Add Archive...]
• Select your h2 jar file (location is up to you, could be wherever you choose)
• Click [OK] (as much as needed), restart NeoOffice.

Now, when creating a new database using the "Database Wizard" :

• Click [File], [New], [Database].
• Select [Connect to existing database] and the select [JDBC]. Click next.
• Example datasource URL: jdbc:h2:~/test
• JDBC driver class: org.h2.Driver

Another solution to use H2 in NeoOffice is:

• Package the h2 jar within an extension package
• Install it as a Java extension in NeoOffice

This can be done by create it using the NetBeans OpenOffice plugin. See also
Extensions Development.

Java Web Start / JNLP

When using Java Web Start / JNLP (Java Network Launch Protocol), permissions
tags must be set in the .jnlp file, and the application .jar file must be signed.
Otherwise, when trying to write to the file system, the following exception will
occur: java.security.AccessControlException: access denied (java.io.FilePermission
... read). Example permission tags:

<security>
 <all-permissions/>
</security>

Using a Connection Pool

For H2, opening a connection is fast if the database is already open. Still, using a
connection pool improves performance if you open and close connections a lot. A
simple connection pool is included in H2. It is based on the Mini Connection Pool
Manager from Christian d'Heureuse. There are other, more complex, open source

50 of 347

http://www.source-code.biz/miniconnectionpoolmanager/
http://www.source-code.biz/miniconnectionpoolmanager/
http://wiki.services.openoffice.org/wiki/Extensions_development_java

connection pools available, for example the Apache Commons DBCP. For H2, it is
about twice as faster to get a connection from the built-in connection pool than to
get one using DriverManager.getConnection().The build-in connection pool is used
as follows:

import java.sql.*;
import org.h2.jdbcx.JdbcConnectionPool;
public class Test {
 public static void main(String[] args) throws Exception {
 JdbcConnectionPool cp = JdbcConnectionPool.create(
 "jdbc:h2:~/test", "sa", "sa");
 for (int i = 0; i < args.length; i++) {
 Connection conn = cp.getConnection();
 conn.createStatement().execute(args[i]);
 conn.close();
 }
 cp.dispose();
 }
}

Fulltext Search

H2 includes two fulltext search implementations. One is using Apache Lucene, and
the other (the native implementation) stores the index data in special tables in the
database.

Using the Native Fulltext Search

To initialize, call:

CREATE ALIAS IF NOT EXISTS FT_INIT FOR "org.h2.fulltext.FullText.init";
CALL FT_INIT();

You need to initialize it in each database where you want to use it. Afterwards,
you can create a fulltext index for a table using:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello World');
CALL FT_CREATE_INDEX('PUBLIC', 'TEST', NULL);

PUBLIC is the schema name, TEST is the table name. The list of column names
(comma separated) is optional, in this case all columns are indexed. The index is
updated in realtime. To search the index, use the following query:

51 of 347

http://commons.apache.org/proper/commons-dbcp/

SELECT * FROM FT_SEARCH('Hello', 0, 0);

This will produce a result set that contains the query needed to retrieve the data:

QUERY: "PUBLIC"."TEST" WHERE "ID"=1

To drop an index on a table:

CALL FT_DROP_INDEX('PUBLIC', 'TEST');

To get the raw data, use FT_SEARCH_DATA('Hello', 0, 0);. The result contains the
columns SCHEMA (the schema name), TABLE (the table name), COLUMNS (an
array of column names), and KEYS (an array of objects). To join a table, use a
join as in: SELECT T.* FROM FT_SEARCH_DATA('Hello', 0, 0) FT, TEST T WHERE
FT.TABLE='TEST' AND T.ID=FT.KEYS[0];

You can also call the index from within a Java application:

org.h2.fulltext.FullText.search(conn, text, limit, offset);
org.h2.fulltext.FullText.searchData(conn, text, limit, offset);

Using the Apache Lucene Fulltext Search

To use the Apache Lucene full text search, you need the Lucene library in the
classpath. Apache Lucene 5.5.5 or later version up to 8.0.* is required. Newer
versions may also work, but were not tested. How to do that depends on the
application; if you use the H2 Console, you can add the Lucene jar file to the
environment variables H2DRIVERS or CLASSPATH. To initialize the Lucene fulltext
search in a database, call:

CREATE ALIAS IF NOT EXISTS FTL_INIT FOR
"org.h2.fulltext.FullTextLucene.init";
CALL FTL_INIT();

You need to initialize it in each database where you want to use it. Afterwards,
you can create a full text index for a table using:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR);
INSERT INTO TEST VALUES(1, 'Hello World');
CALL FTL_CREATE_INDEX('PUBLIC', 'TEST', NULL);

PUBLIC is the schema name, TEST is the table name. The list of column names
(comma separated) is optional, in this case all columns are indexed. The index is
updated in realtime. To search the index, use the following query:

52 of 347

SELECT * FROM FTL_SEARCH('Hello', 0, 0);

This will produce a result set that contains the query needed to retrieve the data:

QUERY: "PUBLIC"."TEST" WHERE "ID"=1

To drop an index on a table (be warned that this will re-index all of the full-text
indices for the entire database):

CALL FTL_DROP_INDEX('PUBLIC', 'TEST');

To get the raw data, use FTL_SEARCH_DATA('Hello', 0, 0);. The result contains
the columns SCHEMA (the schema name), TABLE (the table name), COLUMNS (an
array of column names), and KEYS (an array of objects). To join a table, use a
join as in: SELECT T.* FROM FTL_SEARCH_DATA('Hello', 0, 0) FT, TEST T WHERE
FT.TABLE='TEST' AND T.ID=FT.KEYS[0];

You can also call the index from within a Java application:

org.h2.fulltext.FullTextLucene.search(conn, text, limit, offset);
org.h2.fulltext.FullTextLucene.searchData(conn, text, limit, offset);

The Lucene fulltext search supports searching in specific column only. Column
names must be uppercase (except if the original columns are double quoted). For
column names starting with an underscore (_), another underscore needs to be
added. Example:

CREATE ALIAS IF NOT EXISTS FTL_INIT FOR
"org.h2.fulltext.FullTextLucene.init";
CALL FTL_INIT();
DROP TABLE IF EXISTS TEST;
CREATE TABLE TEST(ID INT PRIMARY KEY, FIRST_NAME VARCHAR,
LAST_NAME VARCHAR);
CALL FTL_CREATE_INDEX('PUBLIC', 'TEST', NULL);
INSERT INTO TEST VALUES(1, 'John', 'Wayne');
INSERT INTO TEST VALUES(2, 'Elton', 'John');
SELECT * FROM FTL_SEARCH_DATA('John', 0, 0);
SELECT * FROM FTL_SEARCH_DATA('LAST_NAME:John', 0, 0);
CALL FTL_DROP_ALL();

User-Defined Variables

This database supports user-defined variables. Variables start with @ and can be
used wherever expressions or parameters are allowed. Variables are not persisted

53 of 347

and session scoped, that means only visible from within the session in which they
are defined. A value is usually assigned using the SET command:

SET @USER = 'Joe';

The value can also be changed using the SET() method. This is useful in queries:

SET @TOTAL = NULL;
SELECT X, SET(@TOTAL, IFNULL(@TOTAL, 1.) * X) F FROM SYSTEM_RANGE(1,
50);

Variables that are not set evaluate to NULL. The data type of a user-defined
variable is the data type of the value assigned to it, that means it is not necessary
(or possible) to declare variable names before using them. There are no
restrictions on the assigned values; large objects (LOBs) are supported as well.
Rolling back a transaction does not affect the value of a user-defined variable.

Date and Time

Date, time and timestamp values support ISO 8601 formatting, including time
zone:

CALL TIMESTAMP '2008-01-01 12:00:00+01:00';

If the time zone is not set, the value is parsed using the current time zone setting
of the system. Date and time information is stored in H2 database files with or
without time zone information depending on used data type.

• With TIMESTAMP data type if the database is opened using another system
time zone, the date and time will be the same. That means if you store the
value '2000-01-01 12:00:00' in one time zone, then close the database and
open the database again in a different time zone, you will also get '2000-01-
01 12:00:00'. Please note that changing the time zone after the H2 driver is
loaded is not supported.

• With TIMESTAMP WITH TIME ZONE data type time zone offset is stored and
if you store the value '2008-01-01 12:00:00+01:00' it remains the same
even if you close and reopen the database with a different time zone. If you
store the value with specified time zone name like '2008-01-01 12:00:00
Europe/Berlin' this name will be converted to time zone offset. Names of
time zones are not stored.

54 of 347

Using Spring

Using the TCP Server

Use the following configuration to start and stop the H2 TCP server using the
Spring Framework:

<bean id = "org.h2.tools.Server"
 class="org.h2.tools.Server"
 factory-method="createTcpServer"
 init-method="start"
 destroy-method="stop">
 <constructor-arg value="-tcp,-tcpAllowOthers,-tcpPort,8043" />
</bean>

The destroy-method will help prevent exceptions on hot-redeployment or when
restarting the server.

OSGi

The standard H2 jar can be dropped in as a bundle in an OSGi container. H2
implements the JDBC Service defined in OSGi Service Platform Release 4 Version
4.2 Enterprise Specification. The H2 Data Source Factory service is registered with
the following properties: OSGI_JDBC_DRIVER_CLASS=org.h2.Driver and
OSGI_JDBC_DRIVER_NAME=H2 JDBC Driver. The OSGI_JDBC_DRIVER_VERSION
property reflects the version of the driver as is.

The following standard configuration properties are supported: JDBC_USER,
JDBC_PASSWORD, JDBC_DESCRIPTION, JDBC_DATASOURCE_NAME,
JDBC_NETWORK_PROTOCOL, JDBC_URL, JDBC_SERVER_NAME,
JDBC_PORT_NUMBER. Any other standard property will be rejected. Non-standard
properties will be passed on to H2 in the connection URL.

Java Management Extension (JMX)

Management over JMX is supported, but not enabled by default. To enable JMX,
append ;JMX=TRUE to the database URL when opening the database. Various
tools support JMX, one such tool is the jconsole. When opening the jconsole,
connect to the process where the database is open (when using the server mode,
you need to connect to the server process). Then go to the MBeans section.
Under org.h2 you will find one entry per database. The object name of the entry
is the database short name, plus the path (each colon is replaced with an
underscore character).

55 of 347

The following attributes and operations are supported:

• CacheSize: the cache size currently in use in KB.
• CacheSizeMax (read/write): the maximum cache size in KB.
• Exclusive: whether this database is open in exclusive mode or not.
• FileReadCount: the number of file read operations since the database was

opened.
• FileSize: the file size in KB.
• FileWriteCount: the number of file write operations since the database was

opened.
• FileWriteCountTotal: the number of file write operations since the database

was created.
• LogMode (read/write): the current transaction log mode. See SET LOG for

details.
• Mode: the compatibility mode (REGULAR if no compatibility mode is used).
• MultiThreaded: true if multi-threaded is enabled.
• Mvcc: true if MVCC is enabled.
• ReadOnly: true if the database is read-only.
• TraceLevel (read/write): the file trace level.
• Version: the database version in use.
• listSettings: list the database settings.
• listSessions: list the open sessions, including currently executing statement

(if any) and locked tables (if any).

To enable JMX, you may need to set the system properties
com.sun.management.jmxremote and com.sun.management.jmxremote.port as
required by the JVM.

56 of 347

Features
Feature List
H2 in Use
Connection Modes
Database URL Overview
Connecting to an Embedded (Local) Database
In-Memory Databases
Database Files Encryption
Database File Locking
Opening a Database Only if it Already Exists
Closing a Database
Ignore Unknown Settings
Changing Other Settings when Opening a Connection
Custom File Access Mode
Multiple Connections
Database File Layout
Logging and Recovery
Compatibility
Auto-Reconnect
Automatic Mixed Mode
Page Size
Using the Trace Options
Using Other Logging APIs
Read Only Databases
Read Only Databases in Zip or Jar File
Computed Columns / Function Based Index
Multi-Dimensional Indexes
User-Defined Functions and Stored Procedures
Pluggable or User-Defined Tables
Triggers
Compacting a Database
Cache Settings
External Authentication (Experimental)

Feature List

Main Features

• Very fast database engine
• Open source
• Written in Java

57 of 347

• Supports standard SQL, JDBC API
• Embedded and Server mode, Clustering support
• Strong security features
• The PostgreSQL ODBC driver can be used
• Multi version concurrency

Additional Features

• Disk based or in-memory databases and tables, read-only database support,
temporary tables

• Transaction support (read committed), 2-phase-commit
• Multiple connections, table level locking
• Cost based optimizer, using a genetic algorithm for complex queries, zero-

administration
• Scrollable and updatable result set support, large result set, external result

sorting, functions can return a result set
• Encrypted database (AES), SHA-256 password encryption, encryption

functions, SSL

SQL Support

• Support for multiple schemas, information schema
• Referential integrity / foreign key constraints with cascade, check

constraints
• Inner and outer joins, subqueries, read only views and inline views
• Triggers and Java functions / stored procedures
• Many built-in functions, including XML and lossless data compression
• Wide range of data types including large objects (BLOB/CLOB) and arrays
• Sequence and autoincrement columns, computed columns (can be used for

function based indexes)
• ORDER BY, GROUP BY, HAVING, UNION, OFFSET / FETCH (including

PERCENT and WITH TIES), LIMIT, TOP, DISTINCT / DISTINCT ON (...)
• Window functions
• Collation support, including support for the ICU4J library
• Support for users and roles
• Compatibility modes for IBM DB2, Apache Derby, HSQLDB, MS SQL Server,

MySQL, Oracle, and PostgreSQL.

Security Features

• Includes a solution for the SQL injection problem
• User password authentication uses SHA-256 and salt

58 of 347

• For server mode connections, user passwords are never transmitted in plain
text over the network (even when using insecure connections; this only
applies to the TCP server and not to the H2 Console however; it also doesn't
apply if you set the password in the database URL)

• All database files (including script files that can be used to backup data) can
be encrypted using the AES-128 encryption algorithm

• The remote JDBC driver supports TCP/IP connections over TLS
• The built-in web server supports connections over TLS
• Passwords can be sent to the database using char arrays instead of Strings

Other Features and Tools

• Small footprint (around 2 MB), low memory requirements
• Multiple index types (b-tree, tree, hash)
• Support for multi-dimensional indexes
• CSV (comma separated values) file support
• Support for linked tables, and a built-in virtual 'range' table
• Supports the EXPLAIN PLAN statement; sophisticated trace options
• Database closing can be delayed or disabled to improve the performance
• Web-based Console application (translated to many languages) with

autocomplete
• The database can generate SQL script files
• Contains a recovery tool that can dump the contents of the database
• Support for variables (for example to calculate running totals)
• Automatic re-compilation of prepared statements
• Uses a small number of database files
• Uses a checksum for each record and log entry for data integrity
• Well tested (high code coverage, randomized stress tests)

H2 in Use

For a list of applications that work with or use H2, see: Links.

Connection Modes

The following connection modes are supported:

• Embedded mode (local connections using JDBC)
• Server mode (remote connections using JDBC or ODBC over TCP/IP)
• Mixed mode (local and remote connections at the same time)

59 of 347

https://h2database.com/html/links.html

Embedded Mode

In embedded mode, an application opens a database from within the same JVM
using JDBC. This is the fastest and easiest connection mode. The disadvantage is
that a database may only be open in one virtual machine (and class loader) at any
time. As in all modes, both persistent and in-memory databases are supported.
There is no limit on the number of database open concurrently, or on the number
of open connections.

In embedded mode I/O operations can be performed by application's threads that
execute a SQL command. The application may not interrupt these threads, it can
lead to database corruption, because JVM closes I/O handle during thread
interruption. Consider other ways to control execution of your application. When
interrupts are possible the async: file system can be used as a workaround, but
full safety is not guaranteed. It's recommended to use the client-server model
instead, the client side may interrupt own threads.

Server Mode

When using the server mode (sometimes called remote mode or client/server
mode), an application opens a database remotely using the JDBC or ODBC API. A
server needs to be started within the same or another virtual machine, or on
another computer. Many applications can connect to the same database at the
same time, by connecting to this server. Internally, the server process opens the
database(s) in embedded mode.

The server mode is slower than the embedded mode, because all data is
transferred over TCP/IP. As in all modes, both persistent and in-memory
databases are supported. There is no limit on the number of database open
concurrently per server, or on the number of open connections.

60 of 347

Mixed Mode

The mixed mode is a combination of the embedded and the server mode. The
first application that connects to a database does that in embedded mode, but
also starts a server so that other applications (running in different processes or
virtual machines) can concurrently access the same data. The local connections
are as fast as if the database is used in just the embedded mode, while the
remote connections are a bit slower.

The server can be started and stopped from within the application (using the
server API), or automatically (automatic mixed mode). When using the automatic
mixed mode, all clients that want to connect to the database (no matter if it's an
local or remote connection) can do so using the exact same database URL.

Database URL Overview

This database supports multiple connection modes and connection settings. This
is achieved using different database URLs. Settings in the URLs are not case
sensitive.

Topic URL Format and Examples

61 of 347

Embedded (local)
connection

jdbc:h2:[file:][<path>]<databaseName>
jdbc:h2:~/test
jdbc:h2:file:/data/sample
jdbc:h2:file:C:/data/sample (Windows only)

In-memory (private) jdbc:h2:mem:

In-memory (named)
jdbc:h2:mem:<databaseName>
jdbc:h2:mem:test_mem

Server mode (remote
connections)
using TCP/IP

jdbc:h2:tcp://<server>[:<port>]/
[<path>]<databaseName>
jdbc:h2:tcp://localhost/~/test
jdbc:h2:tcp://dbserv:8084/~/sample
jdbc:h2:tcp://localhost/mem:test

Server mode (remote
connections)
using TLS

jdbc:h2:ssl://<server>[:<port>]/
[<path>]<databaseName>
jdbc:h2:ssl://localhost:8085/~/sample;

Using encrypted files
jdbc:h2:<url>;CIPHER=AES
jdbc:h2:ssl://localhost/~/test;CIPHER=AES
jdbc:h2:file:~/secure;CIPHER=AES

File locking methods
jdbc:h2:<url>;FILE_LOCK={FILE|SOCKET|NO}
jdbc:h2:file:~/private;CIPHER=AES;FILE_LOCK=SO
CKET

Only open if it already
exists

jdbc:h2:<url>;IFEXISTS=TRUE
jdbc:h2:file:~/sample;IFEXISTS=TRUE

Don't close the database
when the VM exits jdbc:h2:<url>;DB_CLOSE_ON_EXIT=FALSE

Execute SQL on connection

jdbc:h2:<url>;INIT=RUNSCRIPT FROM
'~/create.sql'
jdbc:h2:file:~/sample;INIT=RUNSCRIPT FROM
'~/create.sql'\;RUNSCRIPT FROM '~/populate.sql'

User name and/or
password

jdbc:h2:<url>[;USER=<username>]
[;PASSWORD=<value>]
jdbc:h2:file:~/sample;USER=sa;PASSWORD=123

Debug trace settings
jdbc:h2:<url>;TRACE_LEVEL_FILE=<level 0..3>
jdbc:h2:file:~/sample;TRACE_LEVEL_FILE=3

Ignore unknown settings
jdbc:h2:<url>;IGNORE_UNKNOWN_SETTINGS=TR
UE

Custom file access mode jdbc:h2:<url>;ACCESS_MODE_DATA=rws

62 of 347

Database in a zip file
jdbc:h2:zip:<zipFileName>!/<databaseName>
jdbc:h2:zip:~/db.zip!/test

Compatibility mode
jdbc:h2:<url>;MODE=<databaseType>
jdbc:h2:~/test;MODE=MYSQL;DATABASE_TO_LOW
ER=TRUE

Auto-reconnect
jdbc:h2:<url>;AUTO_RECONNECT=TRUE
jdbc:h2:tcp://localhost/~/test;AUTO_RECONNECT=
TRUE

Automatic mixed mode
jdbc:h2:<url>;AUTO_SERVER=TRUE
jdbc:h2:~/test;AUTO_SERVER=TRUE

Page size jdbc:h2:<url>;PAGE_SIZE=512

Changing other settings

jdbc:h2:<url>;<setting>=<value>[;<setting>=<va
lue>...]
jdbc:h2:file:~/sample;TRACE_LEVEL_SYSTEM_OUT
=3

Connecting to an Embedded (Local) Database

The database URL for connecting to a local database is jdbc:h2:[file:]
[<path>]<databaseName>. The prefix file: is optional. If no or only a relative
path is used, then the current working directory is used as a starting point. The
case sensitivity of the path and database name depend on the operating system,
however it is recommended to use lowercase letters only. The database name
must be at least three characters long (a limitation of File.createTempFile). The
database name must not contain a semicolon. To point to the user home
directory, use ~/, as in: jdbc:h2:~/test.

In-Memory Databases

For certain use cases (for example: rapid prototyping, testing, high performance
operations, read-only databases), it may not be required to persist data, or persist
changes to the data. This database supports the in-memory mode, where the
data is not persisted.

In some cases, only one connection to a in-memory database is required. This
means the database to be opened is private. In this case, the database URL is
jdbc:h2:mem: Opening two connections within the same virtual machine means
opening two different (private) databases.

Sometimes multiple connections to the same in-memory database are required. In
this case, the database URL must include a name. Example: jdbc:h2:mem:db1.

63 of 347

Accessing the same database using this URL only works within the same virtual
machine and class loader environment.

To access an in-memory database from another process or from another
computer, you need to start a TCP server in the same process as the in-memory
database was created. The other processes then need to access the database
over TCP/IP or TLS, using a database URL such as:
jdbc:h2:tcp://localhost/mem:db1.

By default, closing the last connection to a database closes the database. For an
in-memory database, this means the content is lost. To keep the database open,
add ;DB_CLOSE_DELAY=-1 to the database URL. To keep the content of an in-
memory database as long as the virtual machine is alive, use
jdbc:h2:mem:test;DB_CLOSE_DELAY=-1.

Database Files Encryption

The database files can be encrypted. Three encryption algorithms are supported:

• "AES" - also known as Rijndael, only AES-128 is implemented.
• "XTEA" - the 32 round version.
• "FOG" - pseudo-encryption only useful for hiding data from a text editor.

To use file encryption, you need to specify the encryption algorithm (the 'cipher')
and the file password (in addition to the user password) when connecting to the
database.

Creating a New Database with File Encryption

By default, a new database is automatically created if it does not exist yet when
the embedded url is used. To create an encrypted database, connect to it as it
would already exist locally using the embedded URL.

Connecting to an Encrypted Database

The encryption algorithm is set in the database URL, and the file password is
specified in the password field, before the user password. A single space
separates the file password and the user password; the file password itself may
not contain spaces. File passwords and user passwords are case sensitive. Here is
an example to connect to a password-encrypted database:

String url = "jdbc:h2:~/test;CIPHER=AES";
String user = "sa";
String pwds = "filepwd userpwd";

64 of 347

conn = DriverManager.
 getConnection(url, user, pwds);

Encrypting or Decrypting a Database

To encrypt an existing database, use the ChangeFileEncryption tool. This tool can
also decrypt an encrypted database, or change the file encryption key. The tool is
available from within the H2 Console in the tools section, or you can run it from
the command line. The following command line will encrypt the database test in
the user home directory with the file password filepwd and the encryption
algorithm AES:

java -cp h2*.jar org.h2.tools.ChangeFileEncryption -dir ~ -db test -cipher AES
-encrypt filepwd

Database File Locking

Whenever a database is opened, a lock file is created to signal other processes
that the database is in use. If database is closed, or if the process that opened
the database terminates, this lock file is deleted.

The following file locking methods are implemented:

• The default method is FILE and uses a watchdog thread to protect the
database file. The watchdog reads the lock file each second.

• The second method is SOCKET and opens a server socket. The socket
method does not require reading the lock file every second. The socket
method should only be used if the database files are only accessed by one
(and always the same) computer.

• The third method is FS. This will use native file locking using
FileChannel.lock.

• It is also possible to open the database without file locking; in this case it is
up to the application to protect the database files. Failing to do so will result
in a corrupted database. Using the method NO forces the database to not
create a lock file at all. Please note that this is unsafe as another process is
able to open the same database, possibly leading to data corruption.

To open the database with a different file locking method, use the parameter
FILE_LOCK. The following code opens the database with the 'socket' locking
method:

String url = "jdbc:h2:~/test;FILE_LOCK=SOCKET";

For more information about the algorithms, see Advanced / File Locking Protocols.
65 of 347

Opening a Database Only if it Already Exists

By default, when an application calls DriverManager.getConnection(url, ...) with
embedded URL and the database specified in the URL does not yet exist, a new
(empty) database is created. In some situations, it is better to restrict creating
new databases, and only allow to open existing databases. To do this, add
;IFEXISTS=TRUE to the database URL. In this case, if the database does not
already exist, an exception is thrown when trying to connect. The connection only
succeeds when the database already exists. The complete URL may look like this:

String url = "jdbc:h2:/data/sample;IFEXISTS=TRUE";

Closing a Database

Delayed Database Closing

Usually, a database is closed when the last connection to it is closed. In some
situations this slows down the application, for example when it is not possible to
keep at least one connection open. The automatic closing of a database can be
delayed or disabled with the SQL statement SET DB_CLOSE_DELAY <seconds>.
The parameter <seconds> specifies the number of seconds to keep a database
open after the last connection to it was closed. The following statement will keep
a database open for 10 seconds after the last connection was closed:

SET DB_CLOSE_DELAY 10

The value -1 means the database is not closed automatically. The value 0 is the
default and means the database is closed when the last connection is closed. This
setting is persistent and can be set by an administrator only. It is possible to set
the value in the database URL: jdbc:h2:~/test;DB_CLOSE_DELAY=10.

Don't Close a Database when the VM Exits

By default, a database is closed when the last connection is closed. However, if it
is never closed, the database is closed when the virtual machine exits normally,
using a shutdown hook. In some situations, the database should not be closed in
this case, for example because the database is still used at virtual machine
shutdown (to store the shutdown process in the database for example). For those
cases, the automatic closing of the database can be disabled in the database URL.
The first connection (the one that is opening the database) needs to set the
option in the database URL (it is not possible to change the setting afterwards).
The database URL to disable database closing on exit is:

66 of 347

String url = "jdbc:h2:~/test;DB_CLOSE_ON_EXIT=FALSE";

Execute SQL on Connection

Sometimes, particularly for in-memory databases, it is useful to be able to execute
DDL or DML commands automatically when a client connects to a database. This
functionality is enabled via the INIT property. Note that multiple commands may
be passed to INIT, but the semicolon delimiter must be escaped, as in the
example below.

String url = "jdbc:h2:mem:test;INIT=runscript from '~/create.sql'\\;runscript
from '~/init.sql'";

Please note the double backslash is only required in a Java or properties file. In a
GUI, or in an XML file, only one backslash is required:

<property name="url" value=
"jdbc:h2:mem:test;INIT=create schema if not exists test\;runscript from
'~/sql/init.sql'"
/>

Backslashes within the init script (for example within a runscript statement, to
specify the folder names in Windows) need to be escaped as well (using a second
backslash). It might be simpler to avoid backslashes in folder names for this
reason; use forward slashes instead.

Ignore Unknown Settings

Some applications (for example OpenOffice.org Base) pass some additional
parameters when connecting to the database. Why those parameters are passed
is unknown. The parameters PREFERDOSLIKELINEENDS and
IGNOREDRIVERPRIVILEGES are such examples; they are simply ignored to
improve the compatibility with OpenOffice.org. If an application passes other
parameters when connecting to the database, usually the database throws an
exception saying the parameter is not supported. It is possible to ignored such
parameters by adding ;IGNORE_UNKNOWN_SETTINGS=TRUE to the database
URL.

Changing Other Settings when Opening a Connection

In addition to the settings already described, other database settings can be
passed in the database URL. Adding ;setting=value at the end of a database URL

67 of 347

is the same as executing the statement SET setting value just after connecting.
For a list of supported settings, see SQL Grammar or the DbSettings javadoc.

Custom File Access Mode

Usually, the database opens the database file with the access mode rw, meaning
read-write (except for read only databases, where the mode r is used). To open a
database in read-only mode if the database file is not read-only, use
ACCESS_MODE_DATA=r. Also supported are rws and rwd. This setting must be
specified in the database URL:

String url = "jdbc:h2:~/test;ACCESS_MODE_DATA=rws";

For more information see Durability Problems. On many operating systems the
access mode rws does not guarantee that the data is written to the disk.

Multiple Connections

Opening Multiple Databases at the Same Time

An application can open multiple databases at the same time, including multiple
connections to the same database. The number of open database is only limited
by the memory available.

Multiple Connections to the Same Database: Client/Server

If you want to access the same database at the same time from different
processes or computers, you need to use the client / server mode. In this case,
one process acts as the server, and the other processes (that could reside on
other computers as well) connect to the server via TCP/IP (or TLS over TCP/IP for
improved security).

Multithreading Support

This database is multithreading-safe. If an application is multi-threaded, it does
not need to worry about synchronizing access to the database. An application
should normally use one connection per thread. This database synchronizes
access to the same connection, but other databases may not do this. To get
higher concurrency, you need to use multiple connections.

An application can use multiple threads that access the same database at the
same time. With default MVStore engine threads that use different connections

68 of 347

https://h2database.com/javadoc/org/h2/engine/DbSettings.html

can use the database concurrently. With PageStore engine requests to the same
database are synchronized, that means that if one thread executes a long running
query, the other threads need to wait.

Locking, Lock-Timeout, Deadlocks

Please note MVCC is enabled in version 1.4.x by default, when using the MVStore.
In this case, table level locking is not used. If multi-version concurrency is not
used, the database uses table level locks to give each connection a consistent
state of the data. There are two kinds of locks: read locks (shared locks) and
write locks (exclusive locks). All locks are released when the transaction commits
or rolls back. When using the default transaction isolation level 'read committed',
read locks are already released after each statement.

If a connection wants to reads from a table, and there is no write lock on the
table, then a read lock is added to the table. If there is a write lock, then this
connection waits for the other connection to release the lock. If a connection
cannot get a lock for a specified time, then a lock timeout exception is thrown.

Usually, SELECT statements will generate read locks. This includes subqueries.
Statements that modify data use write locks. It is also possible to lock a table
exclusively without modifying data, using the statement SELECT ... FOR UPDATE.
The statements COMMIT and ROLLBACK releases all open locks. The commands
SAVEPOINT and ROLLBACK TO SAVEPOINT don't affect locks. The locks are also
released when the autocommit mode changes, and for connections with
autocommit set to true (this is the default), locks are released after each
statement. The following statements generate locks:

Type of Lock SQL Statement

Read
SELECT * FROM TEST;
CALL SELECT MAX(ID) FROM TEST;
SCRIPT;

Write SELECT * FROM TEST WHERE 1=0 FOR UPDATE;

Write

INSERT INTO TEST VALUES(1, 'Hello');
INSERT INTO TEST SELECT * FROM TEST;
UPDATE TEST SET NAME='Hi';
DELETE FROM TEST;

Write
ALTER TABLE TEST ...;
CREATE INDEX ... ON TEST ...;
DROP INDEX ...;

The number of seconds until a lock timeout exception is thrown can be set
separately for each connection using the SQL command SET LOCK_TIMEOUT

69 of 347

<milliseconds>. The initial lock timeout (that is the timeout used for new
connections) can be set using the SQL command SET DEFAULT_LOCK_TIMEOUT
<milliseconds>. The default lock timeout is persistent.

Avoiding Deadlocks

To avoid deadlocks, ensure that all transactions lock the tables in the same order
(for example in alphabetical order), and avoid upgrading read locks to write locks.
Both can be achieved using explicitly locking tables using SELECT ... FOR
UPDATE.

Note that delete, insert and update operations issue table level locks with
PageStore engine, but does not issue them with default MVStore engine.

Database File Layout

The following files are created for persistent databases when the default MVStore
engine is used:

File Name Description Number of
Files

test.mv.db

Database file.
Contains the transaction log, indexes, and data
for all tables.
Format: <database>.mv.db

1 per database

test.newFile
Temporary file for database compaction.
Contains the new MVStore file.
Format: <database>.newFile

0 or 1 per
database

test.tempFile
Temporary file for database compaction.
Contains the temporary MVStore file.
Format: <database>.tempFile

0 or 1 per
database

The following file is created for persistent databases when PageStore engine is
used:

File
Name Description

Number of
Files

test.h2.db

Database file.
Contains the transaction log, indexes, and data for
all tables.
Format: <database>.h2.db

1 per database

70 of 347

The following files are created for persistent databases by both MVStore and
PageStore engines:

File Name Description Number of Files

test.lock.db

Database lock file.
Automatically (re-)created while the
database is in use.
Format: <database>.lock.db

1 per database (only if
in use)

test.trace.db

Trace file (if the trace option is
enabled).
Contains trace information.
Format: <database>.trace.db
Renamed to <database>.trace.db.old if
too big.

0 or 1 per database

test.123.temp.d
b

Temporary file.
Contains a temporary blob or a large
result set.
Format: <database>.<id>.temp.db

1 per object

Legacy PageStore databases from old versions of H2 can have the following
additional files:

File Name Description Number of Files

test.lobs.db/*

Directory containing one file for each
BLOB or CLOB value larger than a certain
size.
Format: <id>.t<tableId>.lob.db

1 per large object

Moving and Renaming Database Files

Database name and location are not stored inside the database files.

While a database is closed, the files can be moved to another directory, and they
can be renamed as well (as long as all files of the same database start with the
same name and the respective extensions are unchanged).

As there is no platform specific data in the files, they can be moved to other
operating systems without problems.

Backup

When the database is closed, it is possible to backup the database files.

71 of 347

To backup data while the database is running, the SQL commands SCRIPT and
BACKUP can be used.

Logging and Recovery

Whenever data is modified in the database and those changes are committed, the
changes are written to the transaction log (except for in-memory objects). The
changes to the main data area itself are usually written later on, to optimize disk
access. If there is a power failure, the main data area is not up-to-date, but
because the changes are in the transaction log, the next time the database is
opened, the changes are re-applied automatically.

Compatibility

All database engines behave a little bit different. Where possible, H2 supports the
ANSI SQL standard, and tries to be compatible to other databases. There are still
a few differences however:

In MySQL text columns are case insensitive by default, while in H2 they are case
sensitive. However H2 supports case insensitive columns as well. To create the
tables with case insensitive texts, append IGNORECASE=TRUE to the database
URL (example: jdbc:h2:~/test;IGNORECASE=TRUE).

Compatibility Modes

For certain features, this database can emulate the behavior of specific databases.
However, only a small subset of the differences between databases are
implemented in this way. Here is the list of currently supported modes and the
differences to the regular mode:

DB2 Compatibility Mode

To use the IBM DB2 mode, use the database URL jdbc:h2:~/test;MODE=DB2 or
the SQL statement SET MODE DB2.

• For aliased columns, ResultSetMetaData.getColumnName() returns the alias
name and getTableName() returns null.

• Concatenating NULL with another value results in the other value.
• Support the pseudo-table SYSIBM.SYSDUMMY1.
• Timestamps with dash between date and time are supported.
• Datetime value functions return the same value within a command.
• Second and third arguments of TRANSLATE() function are swapped.

72 of 347

Derby Compatibility Mode

To use the Apache Derby mode, use the database URL
jdbc:h2:~/test;MODE=Derby or the SQL statement SET MODE Derby.

• For aliased columns, ResultSetMetaData.getColumnName() returns the alias
name and getTableName() returns null.

• For unique indexes, NULL is distinct. That means only one row with NULL in
one of the columns is allowed.

• Concatenating NULL with another value results in the other value.
• Support the pseudo-table SYSIBM.SYSDUMMY1.
• Datetime value functions return the same value within a command.

HSQLDB Compatibility Mode

To use the HSQLDB mode, use the database URL jdbc:h2:~/test;MODE=HSQLDB
or the SQL statement SET MODE HSQLDB.

• Text can be concatenated using '+'.
• Datetime value functions return the same value within a command.

MS SQL Server Compatibility Mode

To use the MS SQL Server mode, use the database URL
jdbc:h2:~/test;MODE=MSSQLServer or the SQL statement SET MODE
MSSQLServer.

• For aliased columns, ResultSetMetaData.getColumnName() returns the alias
name and getTableName() returns null.

• Identifiers may be quoted using square brackets as in [Test].
• For unique indexes, NULL is distinct. That means only one row with NULL in

one of the columns is allowed.
• Concatenating NULL with another value results in the other value.
• Text can be concatenated using '+'.
• Arguments of LOG() function are swapped.
• MONEY data type is treated like NUMERIC(19, 4) data type. SMALLMONEY

data type is treated like NUMERIC(10, 4) data type.
• IDENTITY can be used for automatic id generation on column level.
• Table hints are discarded. Example: SELECT * FROM table WITH (NOLOCK).
• Datetime value functions return the same value within a command.
• 0x literals are parsed as binary string literals.
• TRUNCATE TABLE restarts next values of generated columns.

73 of 347

MySQL Compatibility Mode

To use the MySQL mode, use the database URL
jdbc:h2:~/test;MODE=MySQL;DATABASE_TO_LOWER=TRUE. Use this mode for
compatibility with MariaDB too. When case-insensitive identifiers are needed
append ;CASE_INSENSITIVE_IDENTIFIERS=TRUE to URL. Do not change value of
DATABASE_TO_LOWER after creation of database.

• Creating indexes in the CREATE TABLE statement is allowed using INDEX(..)
or KEY(..). Example: create table test(id int primary key, name
varchar(255), key idx_name(name));

• When converting a floating point number to an integer, the fractional digits
are not truncated, but the value is rounded.

• Concatenating NULL with another value results in the other value.
• ON DUPLICATE KEY UPDATE is supported in INSERT statements, due to this

feature VALUES has special non-standard meaning is some contexts.
• INSERT IGNORE is partially supported and may be used to skip rows with

duplicate keys if ON DUPLICATE KEY UPDATE is not specified.
• REPLACE INTO is partially supported.
• REGEXP_REPLACE() uses \ for back-references for compatibility with

MariaDB.
• Datetime value functions return the same value within a command.
• 0x literals are parsed as binary string literals.
• Unrelated expressions in ORDER BY clause of DISTINCT queries are

allowed.
• Some MySQL-specific ALTER TABLE commands are partially supported.
• TRUNCATE TABLE restarts next values of generated columns.

Text comparison in MySQL is case insensitive by default, while in H2 it is case
sensitive (as in most other databases). H2 does support case insensitive text
comparison, but it needs to be set separately, using SET IGNORECASE TRUE. This
affects comparison using =, LIKE, REGEXP.

Oracle Compatibility Mode

To use the Oracle mode, use the database URL jdbc:h2:~/test;MODE=Oracle or
the SQL statement SET MODE Oracle.

• For aliased columns, ResultSetMetaData.getColumnName() returns the alias
name and getTableName() returns null.

• When using unique indexes, multiple rows with NULL in all columns are
allowed, however it is not allowed to have multiple rows with the same
values otherwise.

• Concatenating NULL with another value results in the other value.
• Empty strings are treated like NULL values.

74 of 347

• REGEXP_REPLACE() uses \ for back-references.
• RAWTOHEX() converts character strings to hexadecimal representation of

their UTF-8 encoding.
• HEXTORAW() decodes a hexadecimal character string to a binary string.
• DATE data type is treated like TIMESTAMP(0) data type.
• Datetime value functions return the same value within a command.
• ALTER TABLE MODIFY COLUMN command is partially supported.
• SEQUENCE.NEXTVAL and SEQUENCE.CURRVAL return values with

DECIMAL/NUMERIC data type.

PostgreSQL Compatibility Mode

To use the PostgreSQL mode, use the database URL
jdbc:h2:~/test;MODE=PostgreSQL;DATABASE_TO_LOWER=TRUE. Do not change
value of DATABASE_TO_LOWER after creation of database.

• For aliased columns, ResultSetMetaData.getColumnName() returns the alias
name and getTableName() returns null.

• When converting a floating point number to an integer, the fractional digits
are not be truncated, but the value is rounded.

• The system columns CTID and OID are supported.
• LOG(x) is base 10 in this mode.
• REGEXP_REPLACE():

• uses \ for back-references;
• does not throw an exception when the flagsString parameter contains

a 'g';
• replaces only the first matched substring in the absence of the 'g' flag

in the flagsString parameter.
• ON CONFLICT DO NOTHING is supported in INSERT statements.
• Fixed-width strings are padded with spaces.
• MONEY data type is treated like NUMERIC(19, 2) data type.
• Datetime value functions return the same value within a transaction.
• ARRAY_SLICE() out of bounds parameters are silently corrected.
• EXTRACT function with DOW field returns (0-6), Sunday is 0.

Ignite Compatibility Mode

To use the Ignite mode, use the database URL jdbc:h2:~/test;MODE=Ignite or
the SQL statement SET MODE Ignite.

• Creating indexes in the CREATE TABLE statement is allowed using INDEX(..)
or KEY(..). Example: create table test(id int primary key, name
varchar(255), key idx_name(name));

• AFFINITY KEY and SHARD KEY keywords may be used in index definition.

75 of 347

• Datetime value functions return the same value within a transaction.

Auto-Reconnect

The auto-reconnect feature causes the JDBC driver to reconnect to the database if
the connection is lost. The automatic re-connect only occurs when auto-commit is
enabled; if auto-commit is disabled, an exception is thrown. To enable this mode,
append ;AUTO_RECONNECT=TRUE to the database URL.

Re-connecting will open a new session. After an automatic re-connect, variables
and local temporary tables definitions (excluding data) are re-created. The
contents of the system table INFORMATION_SCHEMA.SESSION_STATE contains
all client side state that is re-created.

If another connection uses the database in exclusive mode (enabled using SET
EXCLUSIVE 1 or SET EXCLUSIVE 2), then this connection will try to re-connect
until the exclusive mode ends.

Automatic Mixed Mode

Multiple processes can access the same database without having to start the
server manually. To do that, append ;AUTO_SERVER=TRUE to the database URL.
You can use the same database URL independent of whether the database is
already open or not. This feature doesn't work with in-memory databases.
Example database URL:

jdbc:h2:/data/test;AUTO_SERVER=TRUE

Use the same URL for all connections to this database. Internally, when using this
mode, the first connection to the database is made in embedded mode, and
additionally a server is started internally (as a daemon thread). If the database is
already open in another process, the server mode is used automatically. The IP
address and port of the server are stored in the file .lock.db, that's why in-
memory databases can't be supported.

The application that opens the first connection to the database uses the
embedded mode, which is faster than the server mode. Therefore the main
application should open the database first if possible. The first connection
automatically starts a server on a random port. This server allows remote
connections, however only to this database (to ensure that, the client reads
.lock.db file and sends the random key that is stored there to the server). When
the first connection is closed, the server stops. If other (remote) connections are
still open, one of them will then start a server (auto-reconnect is enabled
automatically).

76 of 347

All processes need to have access to the database files. If the first connection is
closed (the connection that started the server), open transactions of other
connections will be rolled back (this may not be a problem if you don't disable
autocommit). Explicit client/server connections (using jdbc:h2:tcp:// or ssl://) are
not supported. This mode is not supported for in-memory databases.

Here is an example how to use this mode. Application 1 and 2 are not necessarily
started on the same computer, but they need to have access to the database
files. Application 1 and 2 are typically two different processes (however they could
run within the same process).

// Application 1:
DriverManager.getConnection("jdbc:h2:/data/test;AUTO_SERVER=TRUE");

// Application 2:
DriverManager.getConnection("jdbc:h2:/data/test;AUTO_SERVER=TRUE");

When using this feature, by default the server uses any free TCP port. The port
can be set manually using AUTO_SERVER_PORT=9090.

Page Size

The page size for new databases is 2 KB (2048), unless the page size is set
explicitly in the database URL using PAGE_SIZE= when the database is created.
The page size of existing databases can not be changed, so this property needs to
be set when the database is created.

Using the Trace Options

To find problems in an application, it is sometimes good to see what database
operations where executed. This database offers the following trace features:

• Trace to System.out and/or to a file
• Support for trace levels OFF, ERROR, INFO, DEBUG
• The maximum size of the trace file can be set
• It is possible to generate Java source code from the trace file
• Trace can be enabled at runtime by manually creating a file

Trace Options

The simplest way to enable the trace option is setting it in the database URL.
There are two settings, one for System.out (TRACE_LEVEL_SYSTEM_OUT)
tracing, and one for file tracing (TRACE_LEVEL_FILE). The trace levels are 0 for

77 of 347

OFF, 1 for ERROR (the default), 2 for INFO, and 3 for DEBUG. A database URL
with both levels set to DEBUG is:

jdbc:h2:~/test;TRACE_LEVEL_FILE=3;TRACE_LEVEL_SYSTEM_OUT=3

The trace level can be changed at runtime by executing the SQL command SET
TRACE_LEVEL_SYSTEM_OUT level (for System.out tracing) or SET
TRACE_LEVEL_FILE level (for file tracing). Example:

SET TRACE_LEVEL_SYSTEM_OUT 3

Setting the Maximum Size of the Trace File

When using a high trace level, the trace file can get very big quickly. The default
size limit is 16 MB, if the trace file exceeds this limit, it is renamed to .old and a
new file is created. If another such file exists, it is deleted. To limit the size to a
certain number of megabytes, use SET TRACE_MAX_FILE_SIZE mb. Example:

SET TRACE_MAX_FILE_SIZE 1

Java Code Generation

When setting the trace level to INFO or DEBUG, Java source code is generated as
well. This simplifies reproducing problems. The trace file looks like this:

...
12-20 20:58:09 jdbc[0]:
/**/dbMeta3.getURL();
12-20 20:58:09 jdbc[0]:
/**/dbMeta3.getTables(null, "", null, new String[]{"TABLE", "VIEW"});
...

To filter the Java source code, use the ConvertTraceFile tool as follows:

java -cp h2*.jar org.h2.tools.ConvertTraceFile
 -traceFile "~/test.trace.db" -javaClass "Test"

The generated file Test.java will contain the Java source code. The generated
source code may be too large to compile (the size of a Java method is limited). If
this is the case, the source code needs to be split in multiple methods. The
password is not listed in the trace file and therefore not included in the source
code.

78 of 347

Using Other Logging APIs

By default, this database uses its own native 'trace' facility. This facility is called
'trace' and not 'log' within this database to avoid confusion with the transaction
log. Trace messages can be written to both file and System.out. In most cases,
this is sufficient, however sometimes it is better to use the same facility as the
application, for example Log4j. To do that, this database support SLF4J.

SLF4J is a simple facade for various logging APIs and allows to plug in the desired
implementation at deployment time. SLF4J supports implementations such as
Logback, Log4j, Jakarta Commons Logging (JCL), Java logging, x4juli, and Simple
Log.

To enable SLF4J, set the file trace level to 4 in the database URL:

jdbc:h2:~/test;TRACE_LEVEL_FILE=4

Changing the log mechanism is not possible after the database is open, that
means executing the SQL statement SET TRACE_LEVEL_FILE 4 when the
database is already open will not have the desired effect. To use SLF4J, all
required jar files need to be in the classpath. The logger name is h2database. If it
does not work, check the file <database>.trace.db for error messages.

Read Only Databases

If the database files are read-only, then the database is read-only as well. It is not
possible to create new tables, add or modify data in this database. Only SELECT
and CALL statements are allowed. To create a read-only database, close the
database. Then, make the database file read-only. When you open the database
now, it is read-only. There are two ways an application can find out whether
database is read-only: by calling Connection.isReadOnly() or by executing the SQL
statement CALL READONLY().

Using the Custom Access Mode r the database can also be opened in read-only
mode, even if the database file is not read only.

Read Only Databases in Zip or Jar File

To create a read-only database in a zip file, first create a regular persistent
database, and then create a backup. The database must not have pending
changes, that means you need to close all connections to the database first. To
speed up opening the read-only database and running queries, the database
should be closed using SHUTDOWN DEFRAG. If you are using a database named
test, an easy way to create a zip file is using the Backup tool. You can start the

79 of 347

https://www.slf4j.org/

tool from the command line, or from within the H2 Console (Tools - Backup).
Please note that the database must be closed when the backup is created.
Therefore, the SQL statement BACKUP TO can not be used.

When the zip file is created, you can open the database in the zip file using the
following database URL:

jdbc:h2:zip:~/data.zip!/test

Databases in zip files are read-only. The performance for some queries will be
slower than when using a regular database, because random access in zip files is
not supported (only streaming). How much this affects the performance depends
on the queries and the data. The database is not read in memory; therefore large
databases are supported as well. The same indexes are used as when using a
regular database.

If the database is larger than a few megabytes, performance is much better if the
database file is split into multiple smaller files, because random access in
compressed files is not possible. See also the sample application
ReadOnlyDatabaseInZip.

Opening a Corrupted Database

If a database cannot be opened because the boot info (the SQL script that is run
at startup) is corrupted, then the database can be opened by specifying a
database event listener. The exceptions are logged, but opening the database will
continue.

Computed Columns / Function Based Index

A computed column is a column whose value is calculated before storing. The
formula is evaluated when the row is inserted, and re-evaluated every time the
row is updated. One use case is to automatically update the last-modification
time:

CREATE TABLE TEST(
 ID INT,
 NAME VARCHAR,
 LAST_MOD TIMESTAMP WITH TIME ZONE AS CURRENT_TIMESTAMP
);

Function indexes are not directly supported by this database, but they can be
emulated by using computed columns. For example, if an index on the upper-case

80 of 347

https://github.com/h2database/h2database/tree/master/h2/src/test/org/h2/samples/ReadOnlyDatabaseInZip.java

version of a column is required, create a computed column with the upper-case
version of the original column, and create an index for this column:

CREATE TABLE ADDRESS(
 ID INT PRIMARY KEY,
 NAME VARCHAR,
 UPPER_NAME VARCHAR AS UPPER(NAME)
);
CREATE INDEX IDX_U_NAME ON ADDRESS(UPPER_NAME);

When inserting data, it is not required (and not allowed) to specify a value for the
upper-case version of the column, because the value is generated. But you can
use the column when querying the table:

INSERT INTO ADDRESS(ID, NAME) VALUES(1, 'Miller');
SELECT * FROM ADDRESS WHERE UPPER_NAME='MILLER';

Multi-Dimensional Indexes

A tool is provided to execute efficient multi-dimension (spatial) range queries.
This database does not support a specialized spatial index (R-Tree or similar).
Instead, the B-Tree index is used. For each record, the multi-dimensional key is
converted (mapped) to a single dimensional (scalar) value. This value specifies
the location on a space-filling curve.

Currently, Z-order (also called N-order or Morton-order) is used; Hilbert curve
could also be used, but the implementation is more complex. The algorithm to
convert the multi-dimensional value is called bit-interleaving. The scalar value is
indexed using a B-Tree index (usually using a computed column).

The method can result in a drastic performance improvement over just using an
index on the first column. Depending on the data and number of dimensions, the
improvement is usually higher than factor 5. The tool generates a SQL query from
a specified multi-dimensional range. The method used is not database dependent,
and the tool can easily be ported to other databases. For an example how to use
the tool, please have a look at the sample code provided in
TestMultiDimension.java.

User-Defined Functions and Stored Procedures

In addition to the built-in functions, this database supports user-defined Java
functions. In this database, Java functions can be used as stored procedures as
well. A function must be declared (registered) before it can be used. A function
can be defined using source code, or as a reference to a compiled class that is

81 of 347

available in the classpath. By default, the function aliases are stored in the current
schema.

Referencing a Compiled Method

When referencing a method, the class must already be compiled and included in
the classpath where the database is running. Only static Java methods are
supported; both the class and the method must be public. Example Java class:

package acme;
import java.math.*;
public class Function {
 public static boolean isPrime(int value) {
 return new BigInteger(String.valueOf(value)).isProbablePrime(100);
 }
}

The Java function must be registered in the database by calling CREATE ALIAS ...
FOR:

CREATE ALIAS IS_PRIME FOR "acme.Function.isPrime";

For a complete sample application, see src/test/org/h2/samples/Function.java.

Declaring Functions as Source Code

When defining a function alias with source code, the database tries to compile the
source code using the Sun Java compiler (the class com.sun.tools.javac.Main) if
the tools.jar is in the classpath. If not, javac is run as a separate process. Only
the source code is stored in the database; the class is compiled each time the
database is re-opened. Source code is usually passed as dollar quoted text to
avoid escaping problems, however single quotes can be used as well. Example:

CREATE ALIAS NEXT_PRIME AS $$
String nextPrime(String value) {
 return new BigInteger(value).nextProbablePrime().toString();
}
$$;

By default, the three packages java.util, java.math, java.sql are imported. The
method name (nextPrime in the example above) is ignored. Method overloading is
not supported when declaring functions as source code, that means only one
method may be declared for an alias. If different import statements are required,
they must be declared at the beginning and separated with the tag @CODE:

82 of 347

CREATE ALIAS IP_ADDRESS AS $$
import java.net.*;
@CODE
String ipAddress(String host) throws Exception {
 return InetAddress.getByName(host).getHostAddress();
}
$$;

The following template is used to create a complete Java class:

package org.h2.dynamic;
< import statements before the tag @CODE; if not set:
import java.util.*;
import java.math.*;
import java.sql.*;
>
public class <aliasName> {
 public static <sourceCode>
}

Method Overloading

Multiple methods may be bound to a SQL function if the class is already compiled
and included in the classpath. Each Java method must have a different number of
arguments. Method overloading is not supported when declaring functions as
source code.

Function Data Type Mapping

Functions that accept non-nullable parameters such as int will not be called if one
of those parameters is NULL. Instead, the result of the function is NULL. If the
function should be called if a parameter is NULL, you need to use
java.lang.Integer instead.

SQL types are mapped to Java classes and vice-versa as in the JDBC API. For
details, see Data Types. There are a few special cases: java.lang.Object is
mapped to OTHER (a serialized object). Therefore, java.lang.Object can not be
used to match all SQL types (matching all SQL types is not supported). The
second special case is Object[]: arrays of any class are mapped to ARRAY.
Objects of type org.h2.value.Value (the internal value class) are passed through
without conversion.

83 of 347

Functions That Require a Connection

If the first parameter of a Java function is a java.sql.Connection, then the
connection to database is provided. This connection does not need to be closed
before returning. When calling the method from within the SQL statement, this
connection parameter does not need to be (can not be) specified.

Functions Throwing an Exception

If a function throws an exception, then the current statement is rolled back and
the exception is thrown to the application. SQLException are directly re-thrown to
the calling application; all other exceptions are first converted to a SQLException.

Functions Returning a Result Set

Functions may returns a result set. Such a function can be called with the CALL
statement:

public static ResultSet query(Connection conn, String sql) throws SQLException {
 return conn.createStatement().executeQuery(sql);
}

CREATE ALIAS QUERY FOR "org.h2.samples.Function.query";
CALL QUERY('SELECT * FROM TEST');

Using SimpleResultSet

A function can create a result set using the SimpleResultSet tool:

import org.h2.tools.SimpleResultSet;
...
public static ResultSet simpleResultSet() throws SQLException {
 SimpleResultSet rs = new SimpleResultSet();
 rs.addColumn("ID", Types.INTEGER, 10, 0);
 rs.addColumn("NAME", Types.VARCHAR, 255, 0);
 rs.addRow(0, "Hello");
 rs.addRow(1, "World");
 return rs;
}

CREATE ALIAS SIMPLE FOR "org.h2.samples.Function.simpleResultSet";
CALL SIMPLE();

84 of 347

Using a Function as a Table

A function that returns a result set can be used like a table. However, in this case
the function is called at least twice: first while parsing the statement to collect the
column names (with parameters set to null where not known at compile time).
And then, while executing the statement to get the data (maybe multiple times if
this is a join). If the function is called just to get the column list, the URL of the
connection passed to the function is jdbc:columnlist:connection. Otherwise, the
URL of the connection is jdbc:default:connection.

public static ResultSet getMatrix(Connection conn, Integer size)
 throws SQLException {
 SimpleResultSet rs = new SimpleResultSet();
 rs.addColumn("X", Types.INTEGER, 10, 0);
 rs.addColumn("Y", Types.INTEGER, 10, 0);
 String url = conn.getMetaData().getURL();
 if (url.equals("jdbc:columnlist:connection")) {
 return rs;
 }
 for (int s = size.intValue(), x = 0; x < s; x++) {
 for (int y = 0; y < s; y++) {
 rs.addRow(x, y);
 }
 }
 return rs;
}

CREATE ALIAS MATRIX FOR "org.h2.samples.Function.getMatrix";
SELECT * FROM MATRIX(4) ORDER BY X, Y;

Pluggable or User-Defined Tables

For situations where you need to expose other data-sources to the SQL engine as
a table, there are "pluggable tables". For some examples, have a look at the code
in org.h2.test.db.TestTableEngines.

In order to create your own TableEngine, you need to implement the
org.h2.api.TableEngine interface e.g. something like this:

package acme;
public static class MyTableEngine implements org.h2.api.TableEngine {

 private static class MyTable extends org.h2.table.TableBase {
 .. rather a lot of code here...

85 of 347

 }

 public EndlessTable createTable(CreateTableData data) {
 return new EndlessTable(data);
 }
}

and then create the table from SQL like this:

CREATE TABLE TEST(ID INT, NAME VARCHAR)
 ENGINE "acme.MyTableEngine";

It is also possible to pass in parameters to the table engine, like so:

CREATE TABLE TEST(ID INT, NAME VARCHAR) ENGINE "acme.MyTableEngine"
WITH "param1", "param2";

In which case the parameters are passed down in the tableEngineParams field of
the CreateTableData object.

It is also possible to specify default table engine params on schema creation:

CREATE SCHEMA TEST_SCHEMA WITH "param1", "param2";

Params from the schema are used when CREATE TABLE issued on this schema
does not have its own engine params specified.

Triggers

This database supports Java triggers that are called before or after a row is
updated, inserted or deleted. Triggers can be used for complex consistency
checks, or to update related data in the database. It is also possible to use
triggers to simulate materialized views. For a complete sample application, see
src/test/org/h2/samples/TriggerSample.java. A Java trigger must implement the
interface org.h2.api.Trigger. The trigger class must be available in the classpath
of the database engine (when using the server mode, it must be in the classpath
of the server).

import org.h2.api.Trigger;
...
public class TriggerSample implements Trigger {

 public void init(Connection conn, String schemaName, String triggerName,
 String tableName, boolean before, int type) {

86 of 347

 // initialize the trigger object is necessary
 }

 public void fire(Connection conn,
 Object[] oldRow, Object[] newRow)
 throws SQLException {
 // the trigger is fired
 }

 public void close() {
 // the database is closed
 }

 public void remove() {
 // the trigger was dropped
 }

}

The connection can be used to query or update data in other tables. The trigger
then needs to be defined in the database:

CREATE TRIGGER INV_INS AFTER INSERT ON INVOICE
 FOR EACH ROW CALL "org.h2.samples.TriggerSample"

The trigger can be used to veto a change by throwing a SQLException.

As an alternative to implementing the Trigger interface, an application can extend
the abstract class org.h2.tools.TriggerAdapter. This will allows to use the
ResultSet interface within trigger implementations. In this case, only the fire
method needs to be implemented:

import org.h2.tools.TriggerAdapter;
...
public class TriggerSample extends TriggerAdapter {

 public void fire(Connection conn, ResultSet oldRow, ResultSet newRow)
 throws SQLException {
 // the trigger is fired
 }

}

87 of 347

Compacting a Database

Empty space in the database file re-used automatically. When closing the
database, the database is automatically compacted for up to 200 milliseconds by
default. To compact more, use the SQL statement SHUTDOWN COMPACT.
However re-creating the database may further reduce the database size because
this will re-build the indexes. Here is a sample function to do this:

public static void compact(String dir, String dbName,
 String user, String password) throws Exception {
 String url = "jdbc:h2:" + dir + "/" + dbName;
 String file = "data/test.sql";
 Script.execute(url, user, password, file);
 DeleteDbFiles.execute(dir, dbName, true);
 RunScript.execute(url, user, password, file, null, false);
}

See also the sample application org.h2.samples.Compact. The commands
SCRIPT / RUNSCRIPT can be used as well to create a backup of a database and
re-build the database from the script.

Cache Settings

The database keeps most frequently used data in the main memory. The amount
of memory used for caching can be changed using the setting CACHE_SIZE. This
setting can be set in the database connection URL
(jdbc:h2:~/test;CACHE_SIZE=131072), or it can be changed at runtime using SET
CACHE_SIZE size. The size of the cache, as represented by CACHE_SIZE is
measured in KB, with each KB being 1024 bytes. This setting has no effect for in-
memory databases. For persistent databases, the setting is stored in the database
and re-used when the database is opened the next time. However, when opening
an existing database, the cache size is set to at most half the amount of memory
available for the virtual machine (Runtime.getRuntime().maxMemory()), even if
the cache size setting stored in the database is larger; however the setting stored
in the database is kept. Setting the cache size in the database URL or explicitly
using SET CACHE_SIZE overrides this value (even if larger than the physical
memory). To get the current used maximum cache size, use the query SELECT *
FROM INFORMATION_SCHEMA.SETTINGS WHERE NAME =
'info.CACHE_MAX_SIZE'

An experimental scan-resistant cache algorithm "Two Queue" (2Q) is available. To
enable it, append ;CACHE_TYPE=TQ to the database URL. The cache might not
actually improve performance. If you plan to use it, please run your own test
cases first.

88 of 347

Also included is an experimental second level soft reference cache. Rows in this
cache are only garbage collected on low memory. By default the second level
cache is disabled. To enable it, use the prefix SOFT_. Example:
jdbc:h2:~/test;CACHE_TYPE=SOFT_LRU. The cache might not actually improve
performance. If you plan to use it, please run your own test cases first.

To get information about page reads and writes, and the current caching
algorithm in use, call SELECT * FROM INFORMATION_SCHEMA.SETTINGS. The
number of pages read / written is listed.

External authentication (Experimental)

External authentication allows to optionally validate user credentials externally
(JAAS,LDAP,custom classes). Is also possible to temporary assign roles to
externally authenticated users. This feature is experimental and subject to
change

Master user cannot be externally authenticated

To enable external authentication on a database execute statement SET
AUTHENTICATOR TRUE. This setting in persisted on the database.

To connect on a database by using external credentials client must append
AUTHREALM=H2 to the database URL. H2 is the identifier of the authentication
realm (see later).

External authentication requires to send password to the server. For this reason is
works only on local connection or remote over ssl

By default external authentication is performed through JAAS login interface
(configuration name is h2). To configure JAAS add argument
-Djava.security.auth.login.config=jaas.conf Here an example of JAAS login
configuration file content:

h2 {
 com.sun.security.auth.module.LdapLoginModule REQUIRED \
 userProvider="ldap://127.0.0.1:10389"
authIdentity="uid={USERNAME},ou=people,dc=example,dc=com" \
 debug=true useSSL=false ;
};

Is it possible to specify custom authentication settings by using JVM argument
-Dh2auth.configurationFile={urlOfH2Auth.xml}. Here an example of h2auth.xml
file content:

89 of 347

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

<h2Auth allowUserRegistration="false" createMissingRoles="true">

 <!-- realm: DUMMY authenticate users named DUMMY[0-9] with a static
password -->
 <realm name="DUMMY"

validatorClass="org.h2.security.auth.impl.FixedPasswordCredentialsValidator">
 <property name="userNamePattern" value="DUMMY[0-9]" />
 <property name="password" value="mock" />
 </realm>

 <!-- realm LDAPEXAMPLE:perform credentials validation on LDAP -->
 <realm name="LDAPEXAMPLE"
 validatorClass="org.h2.security.auth.impl.LdapCredentialsValidator">
 <property name="bindDnPattern" value="uid=
%u,ou=people,dc=example,dc=com" />
 <property name="host" value="127.0.0.1" />
 <property name="port" value="10389" />
 <property name="secure" value="false" />
 </realm>

 <!-- realm JAAS: perform credentials validation by using JAAS api -->
 <realm name="JAAS"
 validatorClass="org.h2.security.auth.impl.JaasCredentialsValidator">
 <property name="appName" value="H2" />
 </realm>

 <!--Assign to each user role @{REALM} -->
 <userToRolesMapper
class="org.h2.security.auth.impl.AssignRealmNameRole"/>

 <!--Assign to each user role REMOTEUSER -->
 <userToRolesMapper class="org.h2.security.auth.impl.StaticRolesMapper">
 <property name="roles" value="REMOTEUSER"/>
 </userToRolesMapper>
</h2Auth>

Custom credentials validators must implement the interface
org.h2.api.CredentialsValidator

Custom criteria for role assignments must implement the interface
org.h2.api.UserToRoleMapper

90 of 347

Performance
Performance Comparison
PolePosition Benchmark
Database Performance Tuning
Using the Built-In Profiler
Application Profiling
Database Profiling
Statement Execution Plans
How Data is Stored and How Indexes Work
Fast Database Import

Performance Comparison

In many cases H2 is faster than other (open source and not open source)
database engines. Please note this is mostly a single connection benchmark run
on one computer, with many very simple operations running against the
database. This benchmark does not include very complex queries. The embedded
mode of H2 is faster than the client-server mode because the per-statement
overhead is greatly reduced.

Embedded

Test Case Unit H2 HSQLDB Derby

Simple: Init ms 1019 1907 8280

Simple: Query (random) ms 1304 873 1912

Simple: Query (sequential) ms 835 1839 5415

Simple: Update (sequential) ms 961 2333 21759

Simple: Delete (sequential) ms 950 1922 32016

Simple: Memory Usage MB 21 10 8

BenchA: Init ms 919 2133 7528

BenchA: Transactions ms 1219 2297 8541

BenchA: Memory Usage MB 12 15 7

BenchB: Init ms 905 1993 8049

BenchB: Transactions ms 1091 583 1165

BenchB: Memory Usage MB 17 11 8

91 of 347

BenchC: Init ms 2491 4003 8064

BenchC: Transactions ms 1979 803 2840

BenchC: Memory Usage MB 19 22 9

Executed statements # 1930995 1930995 1930995

Total time ms 13673 20686 105569

Statements per second # 141226 93347 18291

Client-Server

Test Case Unit
H2
(Server) HSQLDB Derby PostgreSQL MySQL

Simple: Init ms 16338 17198 27860 30156 29409

Simple: Query
(random) ms 3399 2582 6190 3315 3342

Simple: Query
(sequential) ms 21841 18699 42347 30774 32611

Simple: Update
(sequential) ms 6913 7745 28576 32698 11350

Simple: Delete
(sequential) ms 8051 9751 42202 44480 16555

Simple: Memory
Usage MB 22 11 9 0 1

BenchA: Init ms 12996 14720 24722 26375 26060

BenchA:
Transactions ms 10134 10250 18452 21453 15877

BenchA:
Memory Usage MB 13 15 9 0 1

BenchB: Init ms 15264 16889 28546 31610 29747

BenchB:
Transactions ms 3017 3376 1842 2771 1433

BenchB:
Memory Usage MB 17 12 11 1 1

BenchC: Init ms 14020 10407 17655 19520 17532

BenchC:
Transactions ms 5076 3160 6411 6063 4530

92 of 347

BenchC:
Memory Usage MB 19 21 11 1 1

Executed
statements # 1930995 1930995 1930995 1930995 1930995

Total time ms 117049 114777 244803 249215 188446

Statements per
second # 16497 16823 7887 7748 10246

Benchmark Results and Comments

H2

Version 1.4.177 (2014-04-12) was used for the test. For most operations, the
performance of H2 is about the same as for HSQLDB. One situation where H2 is
slow is large result sets, because they are buffered to disk if more than a certain
number of records are returned. The advantage of buffering is: there is no limit
on the result set size.

HSQLDB

Version 2.3.2 was used for the test. Cached tables are used in this test
(hsqldb.default_table_type=cached), and the write delay is 1 second (SET
WRITE_DELAY 1).

Derby

Version 10.10.1.1 was used for the test. Derby is clearly the slowest embedded
database in this test. This seems to be a structural problem, because all
operations are really slow. It will be hard for the developers of Derby to improve
the performance to a reasonable level. A few problems have been identified:
leaving autocommit on is a problem for Derby. If it is switched off during the
whole test, the results are about 20% better for Derby. Derby calls
FileChannel.force(false), but only twice per log file (not on each commit).
Disabling this call improves performance for Derby by about 2%. Unlike H2, Derby
does not call FileDescriptor.sync() on each checkpoint. Derby supports a testing
mode (system property derby.system.durability=test) where durability is disabled.
According to the documentation, this setting should be used for testing only, as
the database may not recover after a crash. Enabling this setting improves
performance by a factor of 2.6 (embedded mode) or 1.4 (server mode). Even if
enabled, Derby is still less than half as fast as H2 in default mode.

93 of 347

PostgreSQL

Version 9.1.5 was used for the test. The following options where changed in
postgresql.conf: fsync = off, commit_delay = 1000. PostgreSQL is run in server
mode. The memory usage number is incorrect, because only the memory usage
of the JDBC driver is measured.

MySQL

Version 5.1.65-log was used for the test. MySQL was run with the InnoDB
backend. The setting innodb_flush_log_at_trx_commit (found in the my.ini /
my.cnf file) was set to 0. Otherwise (and by default), MySQL is slow (around 140
statements per second in this test) because it tries to flush the data to disk for
each commit. For small transactions (when autocommit is on) this is really slow.
But many use cases use small or relatively small transactions. Too bad this setting
is not listed in the configuration wizard, and it always overwritten when using the
wizard. You need to change this setting manually in the file my.ini / my.cnf, and
then restart the service. The memory usage number is incorrect, because only the
memory usage of the JDBC driver is measured.

Firebird

Firebird 1.5 (default installation) was tested, but the results are not published
currently. It is possible to run the performance test with the Firebird database,
and any information on how to configure Firebird for higher performance are
welcome.

Why Oracle / MS SQL Server / DB2 are Not Listed

The license of these databases does not allow to publish benchmark results. This
doesn't mean that they are fast. They are in fact quite slow, and need a lot of
memory. But you will need to test this yourself. SQLite was not tested because
the JDBC driver doesn't support transactions.

About this Benchmark

How to Run

This test was as follows:

build benchmark

94 of 347

Separate Process per Database

For each database, a new process is started, to ensure the previous test does not
impact the current test.

Number of Connections

This is mostly a single-connection benchmark. BenchB uses multiple connections;
the other tests use one connection.

Real-World Tests

Good benchmarks emulate real-world use cases. This benchmark includes 4 test
cases: BenchSimple uses one table and many small updates / deletes. BenchA is
similar to the TPC-A test, but single connection / single threaded (see also:
www.tpc.org). BenchB is similar to the TPC-B test, using multiple connections
(one thread per connection). BenchC is similar to the TPC-C test, but single
connection / single threaded.

Comparing Embedded with Server Databases

This is mainly a benchmark for embedded databases (where the application runs
in the same virtual machine as the database engine). However MySQL and
PostgreSQL are not Java databases and cannot be embedded into a Java
application. For the Java databases, both embedded and server modes are tested.

Test Platform

This test is run on Mac OS X 10.6. No virus scanner was used, and disk indexing
was disabled. The JVM used is Sun JDK 1.6.

Multiple Runs

When a Java benchmark is run first, the code is not fully compiled and therefore
runs slower than when running multiple times. A benchmark should always run
the same test multiple times and ignore the first run(s). This benchmark runs
three times, but only the last run is measured.

Memory Usage

It is not enough to measure the time taken, the memory usage is important as
well. Performance can be improved by using a bigger cache, but the amount of
memory is limited. HSQLDB tables are kept fully in memory by default; this

95 of 347

benchmark uses 'disk based' tables for all databases. Unfortunately, it is not so
easy to calculate the memory usage of PostgreSQL and MySQL, because they run
in a different process than the test. This benchmark currently does not print
memory usage of those databases.

Delayed Operations

Some databases delay some operations (for example flushing the buffers) until
after the benchmark is run. This benchmark waits between each database tested,
and each database runs in a different process (sequentially).

Transaction Commit / Durability

Durability means transaction committed to the database will not be lost. Some
databases (for example MySQL) try to enforce this by default by calling fsync() to
flush the buffers, but most hard drives don't actually flush all data. Calling the
method slows down transaction commit a lot, but doesn't always make data
durable. When comparing the results, it is important to think about the effect.
Many database suggest to 'batch' operations when possible. This benchmark
switches off autocommit when loading the data, and calls commit after each 1000
inserts. However many applications need 'short' transactions at runtime (a commit
after each update). This benchmark commits after each update / delete in the
simple benchmark, and after each business transaction in the other benchmarks.
For databases that support delayed commits, a delay of one second is used.

Using Prepared Statements

Wherever possible, the test cases use prepared statements.

Currently Not Tested: Startup Time

The startup time of a database engine is important as well for embedded use.
This time is not measured currently. Also, not tested is the time used to create a
database and open an existing database. Here, one (wrapper) connection is
opened at the start, and for each step a new connection is opened and then
closed.

PolePosition Benchmark

The PolePosition is an open source benchmark. The algorithms are all quite
simple. It was developed / sponsored by db4o. This test was not run for a longer
time, so please be aware that the results below are for older database versions
(H2 version 1.1, HSQLDB 1.8, Java 1.4).

96 of 347

Test Case Unit H2 HSQLDB MySQL

Melbourne write ms 369 249 2022

Melbourne read ms 47 49 93

Melbourne read_hot ms 24 43 95

Melbourne delete ms 147 133 176

Sepang write ms 965 1201 3213

Sepang read ms 765 948 3455

Sepang read_hot ms 789 859 3563

Sepang delete ms 1384 1596 6214

Bahrain write ms 1186 1387 6904

Bahrain query_indexed_string ms 336 170 693

Bahrain query_string ms 18064 39703 41243

Bahrain query_indexed_int ms 104 134 678

Bahrain update ms 191 87 159

Bahrain delete ms 1215 729 6812

Imola retrieve ms 198 194 4036

Barcelona write ms 413 832 3191

Barcelona read ms 119 160 1177

Barcelona query ms 20 5169 101

Barcelona delete ms 388 319 3287

Total ms 26724 53962 87112

There are a few problems with the PolePosition test:

• HSQLDB uses in-memory tables by default while H2 uses persistent tables.
The HSQLDB version included in PolePosition does not support changing
this, so you need to replace poleposition-0.20/lib/hsqldb.jar with a newer
version (for example hsqldb-1.8.0.7.jar), and then use the setting
hsqldb.connecturl=jdbc:hsqldb:file:data/hsqldb/dbbench2;hsqldb.default_ta
ble_type=cached;sql.enforce_size=true in the file Jdbc.properties.

• HSQLDB keeps the database open between tests, while H2 closes the
database (losing all the cache). To change that, use the database URL
jdbc:h2:file:data/h2/dbbench;DB_CLOSE_DELAY=-1

97 of 347

• The amount of cache memory is quite important, specially for the
PolePosition test. Unfortunately, the PolePosition test does not take this into
account.

Database Performance Tuning

Keep Connections Open or Use a Connection Pool

If your application opens and closes connections a lot (for example, for each
request), you should consider using a connection pool. Opening a connection
using DriverManager.getConnection is specially slow if the database is closed. By
default the database is closed if the last connection is closed.

If you open and close connections a lot but don't want to use a connection pool,
consider keeping a 'sentinel' connection open for as long as the application runs,
or use delayed database closing. See also Closing a database.

Use a Modern JVM

Newer JVMs are faster. Upgrading to the latest version of your JVM can provide a
"free" boost to performance. Switching from the default Client JVM to the Server
JVM using the -server command-line option improves performance at the cost of a
slight increase in start-up time.

Virus Scanners

Some virus scanners scan files every time they are accessed. It is very important
for performance that database files are not scanned for viruses. The database
engine never interprets the data stored in the files as programs, that means even
if somebody would store a virus in a database file, this would be harmless (when
the virus does not run, it cannot spread). Some virus scanners allow to exclude
files by suffix. Ensure files ending with .db are not scanned.

Using the Trace Options

If the performance hot spots are in the database engine, in many cases the
performance can be optimized by creating additional indexes, or changing the
schema. Sometimes the application does not directly generate the SQL
statements, for example if an O/R mapping tool is used. To view the SQL
statements and JDBC API calls, you can use the trace options. For more
information, see Using the Trace Options.

98 of 347

Index Usage

This database uses indexes to improve the performance of SELECT, UPDATE,
DELETE. If a column is used in the WHERE clause of a query, and if an index
exists on this column, then the index can be used. Multi-column indexes are used
if all or the first columns of the index are used. Both equality lookup and range
scans are supported. Indexes are used to order result sets, but only if the
condition uses the same index or no index at all. The results are sorted in memory
if required. Indexes are created automatically for primary key and unique
constraints. Indexes are also created for foreign key constraints, if required. For
other columns, indexes need to be created manually using the CREATE INDEX
statement.

Index Hints

If you have determined that H2 is not using the optimal index for your query, you
can use index hints to force H2 to use specific indexes.

SELECT * FROM TEST USE INDEX (index_name_1, index_name_2) WHERE X=1

Only indexes in the list will be used when choosing an index to use on the given
table. There is no significance to order in this list.

It is possible that no index in the list is chosen, in which case a full table scan will
be used.

An empty list of index names forces a full table scan to be performed.

Each index in the list must exist.

How Data is Stored Internally

For persistent databases, if a table is created with a single column primary key of
type BIGINT, INT, SMALLINT, TINYINT, then the data of the table is organized in
this way. This is sometimes also called a "clustered index" or "index organized
table".

H2 internally stores table data and indexes in the form of b-trees. Each b-tree
stores entries as a list of unique keys (one or more columns) and data (zero or
more columns). The table data is always organized in the form of a "data b-tree"
with a single column key of type long. If a single column primary key of type
BIGINT, INT, SMALLINT, TINYINT is specified when creating the table (or just
after creating the table, but before inserting any rows), then this column is used
as the key of the data b-tree. If no primary key has been specified, if the primary
key column is of another data type, or if the primary key contains more than one

99 of 347

column, then a hidden auto-increment column of type BIGINT is added to the
table, which is used as the key for the data b-tree. All other columns of the table
are stored within the data area of this data b-tree (except for large BLOB, CLOB
columns, which are stored externally).

For each additional index, one new "index b-tree" is created. The key of this b-
tree consists of the indexed columns, plus the key of the data b-tree. If a primary
key is created after the table has been created, or if the primary key contains
multiple column, or if the primary key is not of the data types listed above, then
the primary key is stored in a new index b-tree.

Optimizer

This database uses a cost based optimizer. For simple and queries and queries
with medium complexity (less than 7 tables in the join), the expected cost
(running time) of all possible plans is calculated, and the plan with the lowest cost
is used. For more complex queries, the algorithm first tries all possible
combinations for the first few tables, and the remaining tables added using a
greedy algorithm (this works well for most joins). Afterwards a genetic algorithm
is used to test at most 2000 distinct plans. Only left-deep plans are evaluated.

Expression Optimization

After the statement is parsed, all expressions are simplified automatically if
possible. Operations are evaluated only once if all parameters are constant.
Functions are also optimized, but only if the function is constant (always returns
the same result for the same parameter values). If the WHERE clause is always
false, then the table is not accessed at all.

COUNT(*) Optimization

If the query only counts all rows of a table, then the data is not accessed.
However, this is only possible if no WHERE clause is used, that means it only
works for queries of the form SELECT COUNT(*) FROM table.

Updating Optimizer Statistics / Column Selectivity

When executing a query, at most one index per join can be used. If the same
table is joined multiple times, for each join only one index is used (the same index
could be used for both joins, or each join could use a different index). Example:
for the query SELECT * FROM TEST T1, TEST T2 WHERE T1.NAME='A' AND
T2.ID=T1.ID, two index can be used, in this case the index on NAME for T1 and
the index on ID for T2.

100 of 347

If a table has multiple indexes, sometimes more than one index could be used.
Example: if there is a table TEST(ID, NAME, FIRSTNAME) and an index on each
column, then two indexes could be used for the query SELECT * FROM TEST
WHERE NAME='A' AND FIRSTNAME='B', the index on NAME or the index on
FIRSTNAME. It is not possible to use both indexes at the same time. Which index
is used depends on the selectivity of the column. The selectivity describes the
'uniqueness' of values in a column. A selectivity of 100 means each value appears
only once, and a selectivity of 1 means the same value appears in many or most
rows. For the query above, the index on NAME should be used if the table
contains more distinct names than first names.

The SQL statement ANALYZE can be used to automatically estimate the selectivity
of the columns in the tables. This command should be run from time to time to
improve the query plans generated by the optimizer.

In-Memory (Hash) Indexes

Using in-memory indexes, specially in-memory hash indexes, can speed up
queries and data manipulation.

In-memory indexes are automatically used for in-memory databases, but can also
be created for persistent databases using CREATE MEMORY TABLE. In many
cases, the rows itself will also be kept in-memory. Please note this may cause
memory problems for large tables.

In-memory hash indexes are backed by a hash table and are usually faster than
regular indexes. However, hash indexes only supports direct lookup (WHERE ID =
?) but not range scan (WHERE ID < ?). To use hash indexes, use HASH as in:
CREATE UNIQUE HASH INDEX and CREATE TABLE ...(ID INT PRIMARY KEY
HASH,...).

Use Prepared Statements

If possible, use prepared statements with parameters.

Prepared Statements and IN(...)

Avoid generating SQL statements with a variable size IN(...) list. Instead, use a
prepared statement with arrays as in the following example:

PreparedStatement prep = conn.prepareStatement(
 "SELECT * FROM TEST WHERE ID = ANY(?)");
prep.setObject(1, new Object[] { "1", "2" });
ResultSet rs = prep.executeQuery();

101 of 347

Optimization Examples

See src/test/org/h2/samples/optimizations.sql for a few examples of queries that
benefit from special optimizations built into the database.

Cache Size and Type

By default the cache size of H2 is quite small. Consider using a larger cache size,
or enable the second level soft reference cache. See also Cache Settings.

Data Types

Each data type has different storage and performance characteristics:

• The DECIMAL/NUMERIC type is slower and requires more storage than the
REAL and DOUBLE types.

• Text types are slower to read, write, and compare than numeric types and
generally require more storage.

• See Large Objects for information on BINARY vs. BLOB and VARCHAR vs.
CLOB performance.

• Parsing and formatting takes longer for the TIME, DATE, and TIMESTAMP
types than the numeric types.

• SMALLINT/TINYINT/BOOLEAN are not significantly smaller or faster to work
with than INTEGER in most modes.

Sorted Insert Optimization

To reduce disk space usage and speed up table creation, an optimization for
sorted inserts is available. When used, b-tree pages are split at the insertion
point. To use this optimization, add SORTED before the SELECT statement:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR) AS
 SORTED SELECT X, SPACE(100) FROM SYSTEM_RANGE(1, 100);
INSERT INTO TEST
 SORTED SELECT X, SPACE(100) FROM SYSTEM_RANGE(101, 200);

Using the Built-In Profiler

A very simple Java profiler is built-in. To use it, use the following template:

import org.h2.util.Profiler;
Profiler prof = new Profiler();
prof.startCollecting();

102 of 347

// some long running process, at least a few seconds
prof.stopCollecting();
System.out.println(prof.getTop(3));

Application Profiling

Analyze First

Before trying to optimize performance, it is important to understand where the
problem is (what part of the application is slow). Blind optimization or
optimization based on guesses should be avoided, because usually it is not an
efficient strategy. There are various ways to analyze an application. Sometimes
two implementations can be compared using System.currentTimeMillis(). But this
does not work for complex applications with many modules, and for memory
problems.

A simple way to profile an application is to use the built-in profiling tool of java.
Example:

java -Xrunhprof:cpu=samples,depth=16 com.acme.Test

Unfortunately, it is only possible to profile the application from start to end.
Another solution is to create a number of full thread dumps. To do that, first run
jps -l to get the process id, and then run jstack <pid> or kill -QUIT <pid> (Linux)
or press Ctrl+C (Windows).

A simple profiling tool is included in H2. To use it, the application needs to be
changed slightly. Example:

import org.h2.util;
...
Profiler profiler = new Profiler();
profiler.startCollecting();
// application code
System.out.println(profiler.getTop(3));

The profiler is built into the H2 Console tool, to analyze databases that open
slowly. To use it, run the H2 Console, and then click on 'Test Connection'.
Afterwards, click on "Test successful" and you get the most common stack traces,
which helps to find out why it took so long to connect. You will only get the stack
traces if opening the database took more than a few seconds.

103 of 347

Database Profiling

The ConvertTraceFile tool generates SQL statement statistics at the end of the
SQL script file. The format used is similar to the profiling data generated when
using java -Xrunhprof. For this to work, the trace level needs to be 2 or higher
(TRACE_LEVEL_FILE=2). The easiest way to set the trace level is to append the
setting to the database URL, for example: jdbc:h2:~/test;TRACE_LEVEL_FILE=2
or jdbc:h2:tcp://localhost/~/test;TRACE_LEVEL_FILE=2. As an example, execute
the following script using the H2 Console:

SET TRACE_LEVEL_FILE 2;
DROP TABLE IF EXISTS TEST;
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255));
@LOOP 1000 INSERT INTO TEST VALUES(?, ?);
SET TRACE_LEVEL_FILE 0;

After running the test case, convert the .trace.db file using the ConvertTraceFile
tool. The trace file is located in the same directory as the database file.

java -cp h2*.jar org.h2.tools.ConvertTraceFile
 -traceFile "~/test.trace.db" -script "~/test.sql"

The generated file test.sql will contain the SQL statements as well as the following
profiling data (results vary):

-- SQL Statement Statistics
-- time: total time in milliseconds (accumulated)
-- count: how many times the statement ran
-- result: total update count or row count

-- self accu time count result sql
-- 62% 62% 158 1000 1000 INSERT INTO TEST VALUES(?, ?);
-- 37% 100% 93 1 0 CREATE TABLE TEST(ID INT PRIMARY KEY...
-- 0% 100% 0 1 0 DROP TABLE IF EXISTS TEST;
-- 0% 100% 0 1 0 SET TRACE_LEVEL_FILE 3;

Statement Execution Plans

The SQL statement EXPLAIN displays the indexes and optimizations the database
uses for a statement. The following statements support EXPLAIN: SELECT,
UPDATE, DELETE, MERGE, INSERT. The following query shows that the database
uses the primary key index to search for rows:

104 of 347

EXPLAIN SELECT * FROM TEST WHERE ID=1;
SELECT
 TEST.ID,
 TEST.NAME
FROM PUBLIC.TEST
 /* PUBLIC.PRIMARY_KEY_2: ID = 1 */
WHERE ID = 1

For joins, the tables in the execution plan are sorted in the order they are
processed. The following query shows the database first processes the table
INVOICE (using the primary key). For each row, it will additionally check that the
value of the column AMOUNT is larger than zero, and for those rows the database
will search in the table CUSTOMER (using the primary key). The query plan
contains some redundancy so it is a valid statement.

CREATE TABLE CUSTOMER(ID IDENTITY, NAME VARCHAR);
CREATE TABLE INVOICE(ID IDENTITY,
 CUSTOMER_ID INT REFERENCES CUSTOMER(ID),
 AMOUNT NUMBER);

EXPLAIN SELECT I.ID, C.NAME FROM CUSTOMER C, INVOICE I
WHERE I.ID=10 AND AMOUNT>0 AND C.ID=I.CUSTOMER_ID;

SELECT
 I.ID,
 C.NAME
FROM PUBLIC.INVOICE I
 /* PUBLIC.PRIMARY_KEY_9: ID = 10 */
 /* WHERE (I.ID = 10)
 AND (AMOUNT > 0)
 */
INNER JOIN PUBLIC.CUSTOMER C
 /* PUBLIC.PRIMARY_KEY_5: ID = I.CUSTOMER_ID */
 ON 1=1
WHERE (C.ID = I.CUSTOMER_ID)
 AND ((I.ID = 10)
 AND (AMOUNT > 0))

Displaying the Scan Count

EXPLAIN ANALYZE additionally shows the scanned rows per table and pages read
from disk per table or index. This will actually execute the query, unlike EXPLAIN
which only prepares it. The following query scanned 1000 rows, and to do that
had to read 85 pages from the data area of the table. Running the query twice

105 of 347

will not list the pages read from disk, because they are now in the cache. The
tableScan means this query doesn't use an index.

EXPLAIN ANALYZE SELECT * FROM TEST;
SELECT
 TEST.ID,
 TEST.NAME
FROM PUBLIC.TEST
 /* PUBLIC.TEST.tableScan */
 /* scanCount: 1000 */
/*
total: 85
TEST.TEST_DATA read: 85 (100%)
*/

The cache will prevent the pages are read twice. H2 reads all columns of the row
unless only the columns in the index are read. Except for large CLOB and BLOB,
which are not store in the table.

Special Optimizations

For certain queries, the database doesn't need to read all rows, or doesn't need to
sort the result even if ORDER BY is used.

For queries of the form SELECT COUNT(*), MIN(ID), MAX(ID) FROM TEST, the
query plan includes the line /* direct lookup */ if the data can be read from an
index.

For queries of the form SELECT DISTINCT CUSTOMER_ID FROM INVOICE, the
query plan includes the line /* distinct */ if there is an non-unique or multi-
column index on this column, and if this column has a low selectivity.

For queries of the form SELECT * FROM TEST ORDER BY ID, the query plan
includes the line /* index sorted */ to indicate there is no separate sorting
required.

For queries of the form SELECT * FROM TEST GROUP BY ID ORDER BY ID, the
query plan includes the line /* group sorted */ to indicate there is no separate
sorting required.

How Data is Stored and How Indexes Work

Internally, each row in a table is identified by a unique number, the row id. The
rows of a table are stored with the row id as the key. The row id is a number of

106 of 347

type long. If a table has a single column primary key of type INT or BIGINT, then
the value of this column is the row id, otherwise the database generates the row
id automatically. There is a (non-standard) way to access the row id: using the
ROWID pseudo-column:

CREATE TABLE ADDRESS(FIRST_NAME VARCHAR,
 NAME VARCHAR, CITY VARCHAR, PHONE VARCHAR);
INSERT INTO ADDRESS VALUES('John', 'Miller', 'Berne', '123 456 789');
INSERT INTO ADDRESS VALUES('Philip', 'Jones', 'Berne', '123 012 345');
SELECT _ROWID_, * FROM ADDRESS;

The data is stored in the database as follows:

ROWID FIRST_NAME NAME CITY PHONE
1 John Miller Berne 123 456 789
2 Philip Jones Berne 123 012 345
Access by row id is fast because the data is sorted by this key. Please note the
row id is not available until after the row was added (that means, it can not be
used in computed columns or constraints). If the query condition does not contain
the row id (and if no other index can be used), then all rows of the table are
scanned. A table scan iterates over all rows in the table, in the order of the row
id. To find out what strategy the database uses to retrieve the data, use EXPLAIN
SELECT:

SELECT * FROM ADDRESS WHERE NAME = 'Miller';

EXPLAIN SELECT PHONE FROM ADDRESS WHERE NAME = 'Miller';
SELECT
 PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.ADDRESS.tableScan */
WHERE NAME = 'Miller';

Indexes

An index internally is basically just a table that contains the indexed column(s),
plus the row id:

CREATE INDEX INDEX_PLACE ON ADDRESS(CITY, NAME, FIRST_NAME);

In the index, the data is sorted by the indexed columns. So this index contains the
following data:

CITY NAME FIRST_NAME _ROWID_

107 of 347

Berne Jones Philip 2
Berne Miller John 1
When the database uses an index to query the data, it searches the index for the
given data, and (if required) reads the remaining columns in the main data table
(retrieved using the row id). An index on city, name, and first name (multi-column
index) allows to quickly search for rows when the city, name, and first name are
known. If only the city and name, or only the city is known, then this index is also
used (so creating an additional index on just the city is not needed). This index is
also used when reading all rows, sorted by the indexed columns. However, if only
the first name is known, then this index is not used:

EXPLAIN SELECT PHONE FROM ADDRESS
 WHERE CITY = 'Berne' AND NAME = 'Miller'
 AND FIRST_NAME = 'John';
SELECT
 PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.INDEX_PLACE: FIRST_NAME = 'John'
 AND CITY = 'Berne'
 AND NAME = 'Miller'
 */
WHERE (FIRST_NAME = 'John')
 AND ((CITY = 'Berne')
 AND (NAME = 'Miller'));

EXPLAIN SELECT PHONE FROM ADDRESS WHERE CITY = 'Berne';
SELECT
 PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.INDEX_PLACE: CITY = 'Berne' */
WHERE CITY = 'Berne';

EXPLAIN SELECT * FROM ADDRESS ORDER BY CITY, NAME, FIRST_NAME;
SELECT
 ADDRESS.FIRST_NAME,
 ADDRESS.NAME,
 ADDRESS.CITY,
 ADDRESS.PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.INDEX_PLACE */
ORDER BY 3, 2, 1
/* index sorted */;

EXPLAIN SELECT PHONE FROM ADDRESS WHERE FIRST_NAME = 'John';

108 of 347

SELECT
 PHONE
FROM PUBLIC.ADDRESS
 /* PUBLIC.ADDRESS.tableScan */
WHERE FIRST_NAME = 'John';

If your application often queries the table for a phone number, then it makes
sense to create an additional index on it:

CREATE INDEX IDX_PHONE ON ADDRESS(PHONE);

This index contains the phone number, and the row id:

PHONE _ROWID_
123 012 345 2
123 456 789 1

Using Multiple Indexes

Within a query, only one index per logical table is used. Using the condition
PHONE = '123 567 789' OR CITY = 'Berne' would use a table scan instead of first
using the index on the phone number and then the index on the city. It makes
sense to write two queries and combine then using UNION. In this case, each
individual query uses a different index:

EXPLAIN SELECT NAME FROM ADDRESS WHERE PHONE = '123 567 789'
UNION SELECT NAME FROM ADDRESS WHERE CITY = 'Berne';

(SELECT
 NAME
FROM PUBLIC.ADDRESS
 /* PUBLIC.IDX_PHONE: PHONE = '123 567 789' */
WHERE PHONE = '123 567 789')
UNION
(SELECT
 NAME
FROM PUBLIC.ADDRESS
 /* PUBLIC.INDEX_PLACE: CITY = 'Berne' */
WHERE CITY = 'Berne')

Fast Database Import

To speed up large imports, consider using the following options temporarily:

109 of 347

• SET LOG 0 (disabling the transaction log)
• SET CACHE_SIZE (a large cache is faster)
• SET LOCK_MODE 0 (disable locking)
• SET UNDO_LOG 0 (disable the session undo log)

These options can be set in the database URL:
jdbc:h2:~/test;LOG=0;CACHE_SIZE=65536;LOCK_MODE=0;UNDO_LOG=0. Most
of those options are not recommended for regular use, that means you need to
reset them after use.

If you have to import a lot of rows, use a PreparedStatement or use CSV import.
Please note that CREATE TABLE(...) ... AS SELECT ... is faster than CREATE
TABLE(...); INSERT INTO ... SELECT

110 of 347

Advanced
Result Sets
Large Objects
Linked Tables
Spatial Features
Recursive Queries
Updatable Views
Transaction Isolation
Multi-Version Concurrency Control (MVCC)
Clustering / High Availability
Two Phase Commit
Compatibility
Keywords / Reserved Words
Standards Compliance
Run as Windows Service
ODBC Driver
Using H2 in Microsoft .NET
ACID
Durability Problems
Using the Recover Tool
File Locking Protocols
Using Passwords
Password Hash
Protection against SQL Injection
Protection against Remote Access
Restricting Class Loading and Usage
Security Protocols
TLS Connections
Universally Unique Identifiers (UUID)
Settings Read from System Properties
Setting the Server Bind Address
Pluggable File System
Split File System
Database Upgrade
Java Objects Serialization
Custom Data Types Handler API
Limits and Limitations
Glossary and Links

111 of 347

Result Sets

Statements that Return a Result Set

The following statements return a result set: SELECT, TABLE, VALUES, EXPLAIN,
CALL, SCRIPT, SHOW, HELP. EXECUTE may return either a result set or an update
count. Result of a WITH statement depends on inner command. All other
statements return an update count.

Limiting the Number of Rows

Before the result is returned to the application, all rows are read by the database.
Server side cursors are not supported currently. If only the first few rows are
interesting for the application, then the result set size should be limited to
improve the performance. This can be done using FETCH in a query (example:
SELECT * FROM TEST FETCH FIRST 100 ROWS ONLY), or by using
Statement.setMaxRows(max).

Large Result Sets and External Sorting

For large result set, the result is buffered to disk. The threshold can be defined
using the statement SET MAX_MEMORY_ROWS. If ORDER BY is used, the sorting
is done using an external sort algorithm. In this case, each block of rows is sorted
using quick sort, then written to disk; when reading the data, the blocks are
merged together.

Large Objects

Storing and Reading Large Objects

If it is possible that the objects don't fit into memory, then the data type CLOB
(for textual data) or BLOB (for binary data) should be used. For these data types,
the objects are not fully read into memory, by using streams. To store a BLOB,
use PreparedStatement.setBinaryStream. To store a CLOB, use
PreparedStatement.setCharacterStream. To read a BLOB, use
ResultSet.getBinaryStream, and to read a CLOB, use
ResultSet.getCharacterStream. When using the client/server mode, large BLOB
and CLOB data is stored in a temporary file on the client side.

112 of 347

When to use CLOB/BLOB

By default, this database stores large LOB (CLOB and BLOB) objects separate
from the main table data. Small LOB objects are stored in-place, the threshold can
be set using MAX_LENGTH_INPLACE_LOB, but there is still an overhead to use
CLOB/BLOB. Because of this, BLOB and CLOB should never be used for columns
with a maximum size below about 200 bytes. The best threshold depends on the
use case; reading in-place objects is faster than reading from separate files, but
slows down the performance of operations that don't involve this column.

Large Object Compression

The following feature is only available for the PageStore storage engine. For the
MVStore engine (the default for H2 version 1.4.x), append ;COMPRESS=TRUE to
the database URL instead. CLOB and BLOB values can be compressed by using
SET COMPRESS_LOB. The LZF algorithm is faster but needs more disk space. By
default compression is disabled, which usually speeds up write operations. If you
store many large compressible values such as XML, HTML, text, and
uncompressed binary files, then compressing can save a lot of disk space
(sometimes more than 50%), and read operations may even be faster.

Linked Tables

This database supports linked tables, which means tables that don't exist in the
current database but are just links to another database. To create such a link, use
the CREATE LINKED TABLE statement:

CREATE LINKED TABLE LINK('org.postgresql.Driver', 'jdbc:postgresql:test', 'sa',
'sa', 'TEST');

You can then access the table in the usual way. Whenever the linked table is
accessed, the database issues specific queries over JDBC. Using the example
above, if you issue the query SELECT * FROM LINK WHERE ID=1, then the
following query is run against the PostgreSQL database: SELECT * FROM TEST
WHERE ID=?. The same happens for insert and update statements. Only simple
statements are executed against the target database, that means no joins
(queries that contain joins are converted to simple queries). Prepared statements
are used where possible.

To view the statements that are executed against the target table, set the trace
level to 3.

113 of 347

If multiple linked tables point to the same database (using the same database
URL), the connection is shared. To disable this, set the system property
h2.shareLinkedConnections=false.

The statement CREATE LINKED TABLE supports an optional schema name
parameter.

The following are not supported because they may result in a deadlock: creating a
linked table to the same database, and creating a linked table to another
database using the server mode if the other database is open in the same server
(use the embedded mode instead).

Data types that are not supported in H2 are also not supported for linked tables,
for example unsigned data types if the value is outside the range of the signed
type. In such cases, the columns needs to be cast to a supported type.

Updatable Views

By default, views are not updatable. To make a view updatable, use an "instead
of" trigger as follows:

CREATE TRIGGER TRIGGER_NAME
INSTEAD OF INSERT, UPDATE, DELETE
ON VIEW_NAME
FOR EACH ROW CALL "com.acme.TriggerClassName";

Update the base table(s) within the trigger as required. For details, see the
sample application org.h2.samples.UpdatableView.

Transaction Isolation

Please note that most data definition language (DDL) statements, such as "create
table", commit the current transaction. See the Commands for details.

Transaction isolation is provided for all data manipulation language (DML)
statements.

The default MVStore engine supports read uncommitted, read committed,
repeatable read, snapshot, and serializable (partially, see below) isolation levels:

• Read uncommitted
Dirty reads, non-repeatable reads, and phantom reads are possible. To
enable, execute the SQL statement SET SESSION CHARACTERISTICS AS
TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

114 of 347

• Read committed
This is the default level. Dirty reads aren't possible; non-repeatable reads
and phantom reads are possible. To enable, execute the SQL statement SET
SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ
COMMITTED

• Repeatable read
Dirty reads and non-repeatable reads aren't possible, phantom reads are
possible. To enable, execute the SQL statement SET SESSION
CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL REPEATABLE
READ

• Snapshot
Dirty reads, non-repeatable reads, and phantom reads aren't possible. This
isolation level is very expensive in databases with many tables. To enable,
execute the SQL statement SET SESSION CHARACTERISTICS AS
TRANSACTION ISOLATION LEVEL SNAPSHOT

• Serializable
Dirty reads, non-repeatable reads, and phantom reads aren't possible. Note
that this isolation level in H2 currently doesn't ensure equivalence of
concurrent and serializable execution of transactions that perform write
operations. This isolation level is very expensive in databases with many
tables. To enable, execute the SQL statement SET SESSION
CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL SERIALIZABLE

The PageStore engine supports read uncommitted, read committed, and
serializable isolation levels:

• Read uncommitted
This level means that transaction isolation is disabled. This level is not
supported by PageStore engine if multi-threaded mode is enabled. To
enable, execute the SQL statement SET SESSION CHARACTERISTICS AS
TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

• Read committed
This is the default level. Read locks are released immediately after executing
the statement, but write locks are kept until the transaction commits. To
enable, execute the SQL statement SET SESSION CHARACTERISTICS AS
TRANSACTION ISOLATION LEVEL READ COMMITTED

• Serializable
Both read locks and write locks are kept until the transaction commits. To
enable, execute the SQL statement SET SESSION CHARACTERISTICS AS
TRANSACTION ISOLATION LEVEL SERIALIZABLE

If repeatable read isolation level is requested when using a PageStore engine it is
replaced with serializable isolation level.

115 of 347

• Dirty reads
Means a connection can read uncommitted changes made by another
connection.
Possible with: read uncommitted.

• Non-repeatable reads
A connection reads a row, another connection changes a row and commits,
and the first connection re-reads the same row and gets the new result.
Possible with: read uncommitted, read committed.

• Phantom reads
A connection reads a set of rows using a condition, another connection
inserts a row that falls in this condition and commits, then the first
connection re-reads using the same condition and gets the new row.
Possible with: read uncommitted, read committed, repeatable read.

Multi-Version Concurrency Control (MVCC)

With default MVStore engine delete, insert and update operations only issue a
shared lock on the table. An exclusive lock is still used when adding or removing
columns or when dropping the table. Connections only 'see' committed data, and
own changes. That means, if connection A updates a row but doesn't commit this
change yet, connection B will see the old value. Only when the change is
committed, the new value is visible by other connections (read committed). If
multiple connections concurrently try to lock or update the same row, the
database waits until it can apply the change, but at most until the lock timeout
expires.

Table Level Locking (PageStore engine)

With PageStore engine to make sure all connections only see consistent data,
table level locking is used. This mechanism does not allow high concurrency, but
is very fast. Shared locks and exclusive locks are supported. Before reading from
a table, the database tries to add a shared lock to the table (this is only possible if
there is no exclusive lock on the object by another connection). If the shared lock
is added successfully, the table can be read. It is allowed that other connections
also have a shared lock on the same object. If a connection wants to write to a
table (update or delete a row), an exclusive lock is required. To get the exclusive
lock, other connection must not have any locks on the object. After the
connection commits, all locks are released. This database keeps all locks in
memory. When a lock is released, and multiple connections are waiting for it, one
of them is picked at random.

116 of 347

Lock Timeout

If a connection cannot get a lock on an object, the connection waits for some
amount of time (the lock timeout). During this time, hopefully the connection
holding the lock commits and it is then possible to get the lock. If this is not
possible because the other connection does not release the lock for some time,
the unsuccessful connection will get a lock timeout exception. The lock timeout
can be set individually for each connection.

Clustering / High Availability

This database supports a simple clustering / high availability mechanism. The
architecture is: two database servers run on two different computers, and on both
computers is a copy of the same database. If both servers run, each database
operation is executed on both computers. If one server fails (power, hardware or
network failure), the other server can still continue to work. From this point on,
the operations will be executed only on one server until the other server is back
up.

Clustering can only be used in the server mode (the embedded mode does not
support clustering). The cluster can be re-created using the CreateCluster tool
without stopping the remaining server. Applications that are still connected are
automatically disconnected, however when appending
;AUTO_RECONNECT=TRUE, they will recover from that.

To initialize the cluster, use the following steps:

• Create a database
• Use the CreateCluster tool to copy the database to another location and

initialize the clustering. Afterwards, you have two databases containing the
same data.

• Start two servers (one for each copy of the database)
• You are now ready to connect to the databases with the client application(s)

Using the CreateCluster Tool

To understand how clustering works, please try out the following example. In this
example, the two databases reside on the same computer, but usually, the
databases will be on different servers.

• Create two directories: server1, server2. Each directory will simulate a
directory on a computer.

• Start a TCP server pointing to the first directory. You can do this using the
command line:

117 of 347

java org.h2.tools.Server
 -tcp -tcpPort 9101
 -baseDir server1

• Start a second TCP server pointing to the second directory. This will
simulate a server running on a second (redundant) computer. You can do
this using the command line:

java org.h2.tools.Server
 -tcp -tcpPort 9102
 -baseDir server2

• Use the CreateCluster tool to initialize clustering. This will automatically
create a new, empty database if it does not exist. Run the tool on the
command line:

java org.h2.tools.CreateCluster
 -urlSource jdbc:h2:tcp://localhost:9101/~/test
 -urlTarget jdbc:h2:tcp://localhost:9102/~/test
 -user sa
 -serverList localhost:9101,localhost:9102

• You can now connect to the databases using an application or the H2
Console using the JDBC URL
jdbc:h2:tcp://localhost:9101,localhost:9102/~/test

• If you stop a server (by killing the process), you will notice that the other
machine continues to work, and therefore the database is still accessible.

• To restore the cluster, you first need to delete the database that failed, then
restart the server that was stopped, and re-run the CreateCluster tool.

Detect Which Cluster Instances are Running

To find out which cluster nodes are currently running, execute the following SQL
statement:

SELECT VALUE FROM INFORMATION_SCHEMA.SETTINGS WHERE
NAME='CLUSTER'

If the result is '' (two single quotes), then the cluster mode is disabled. Otherwise,
the list of servers is returned, enclosed in single quote. Example:
'server1:9191,server2:9191'.

It is also possible to get the list of servers by using Connection.getClientInfo().

118 of 347

The property list returned from getClientInfo() contains a numServers property
that returns the number of servers that are in the connection list. To get the
actual servers, getClientInfo() also has properties server0..serverX, where serverX
is the number of servers minus 1.

Example: To get the 2nd server in the connection list one uses
getClientInfo('server1'). Note: The serverX property only returns IP addresses
and ports and not hostnames.

Clustering Algorithm and Limitations

Read-only queries are only executed against the first cluster node, but all other
statements are executed against all nodes. There is currently no load balancing
made to avoid problems with transactions. The following functions may yield
different results on different cluster nodes and must be executed with care:
UUID(), RANDOM_UUID(), SECURE_RAND(), SESSION_ID(), MEMORY_FREE(),
MEMORY_USED(), CSVREAD(), CSVWRITE(), RAND() [when not using a seed].
Those functions should not be used directly in modifying statements (for example
INSERT, UPDATE, MERGE). However, they can be used in read-only statements
and the result can then be used for modifying statements. Using auto-increment
and identity columns is currently not supported. Instead, sequence values need to
be manually requested and then used to insert data (using two statements).

When using the cluster modes, result sets are read fully in memory by the client,
so that there is no problem if the server dies that executed the query. Result sets
must fit in memory on the client side.

The SQL statement SET AUTOCOMMIT FALSE is not supported in the cluster
mode. To disable autocommit, the method Connection.setAutoCommit(false)
needs to be called.

It is possible that a transaction from one connection overtakes a transaction from
a different connection. Depending on the operations, this might result in different
results, for example when conditionally incrementing a value in a row.

Two Phase Commit

The two phase commit protocol is supported. 2-phase-commit works as follows:

• Autocommit needs to be switched off
• A transaction is started, for example by inserting a row
• The transaction is marked 'prepared' by executing the SQL statement

PREPARE COMMIT transactionName
• The transaction can now be committed or rolled back

119 of 347

• If a problem occurs before the transaction was successfully committed or
rolled back (for example because a network problem occurred), the
transaction is in the state 'in-doubt'

• When re-connecting to the database, the in-doubt transactions can be listed
with SELECT * FROM INFORMATION_SCHEMA.IN_DOUBT

• Each transaction in this list must now be committed or rolled back by
executing COMMIT TRANSACTION transactionName or ROLLBACK
TRANSACTION transactionName

• The database needs to be closed and re-opened to apply the changes

Compatibility

This database is (up to a certain point) compatible to other databases such as
HSQLDB, MySQL and PostgreSQL. There are certain areas where H2 is
incompatible.

Transaction Commit when Autocommit is On

At this time, this database engine commits a transaction (if autocommit is
switched on) just before returning the result. For a query, this means the
transaction is committed even before the application scans through the result set,
and before the result set is closed. Other database engines may commit the
transaction in this case when the result set is closed.

Keywords / Reserved Words

There is a list of keywords that can't be used as identifiers (table names, column
names and so on), unless they are quoted (surrounded with double quotes). The
following tokens are keywords in H2:

Keyword H2
SQL:
2016

SQL:
2011

SQL:
2008

SQL:
2003

SQL:
1999 SQL-92

ALL + + + + + + +

AND CS + + + + + +

ARRAY + + + + + +

AS CS + + + + + +

BETWEEN CS + + + + NR +

BOTH CS + + + + + +

CASE + + + + + + +

120 of 347

Keyword H2
SQL:
2016

SQL:
2011

SQL:
2008

SQL:
2003

SQL:
1999 SQL-92

CHECK + + + + + + +

CONSTRAINT + + + + + + +

CROSS + + + + + + +

CURRENT_CATALOG + + + +

CURRENT_DATE + + + + + + +

CURRENT_SCHEMA + + + +

CURRENT_TIME + + + + + + +

CURRENT_TIMESTA
MP + + + + + + +

CURRENT_USER + + + + + + +

DISTINCT + + + + + + +

EXCEPT + + + + + + +

EXISTS + + + + + NR +

FALSE + + + + + + +

FETCH + + + + + + +

FILTER CS + + + +

FOR + + + + + + +

FOREIGN + + + + + + +

FROM + + + + + + +

FULL + + + + + + +

GROUP + + + + + + +

GROUPS CS + +

HAVING + + + + + + +

IF +

ILIKE CS

IN CS + + + + + +

INNER + + + + + + +

INTERSECT + + + + + + +

121 of 347

Keyword H2
SQL:
2016

SQL:
2011

SQL:
2008

SQL:
2003

SQL:
1999 SQL-92

INTERSECTS +

INTERVAL + + + + + + +

IS + + + + + + +

JOIN + + + + + + +

LEADING CS + + + + + +

LEFT + + + + + + +

LIKE + + + + + + +

LIMIT + +

LOCALTIME + + + + + +

LOCALTIMESTAMP + + + + + +

MINUS +

NATURAL + + + + + + +

NOT + + + + + + +

NULL + + + + + + +

OFFSET + + + +

ON + + + + + + +

OR CS + + + + + +

ORDER + + + + + + +

OVER CS + + + +

PARTITION CS + + + +

PRIMARY + + + + + + +

QUALIFY +

RANGE CS + + + +

REGEXP CS

RIGHT + + + + + + +

ROW + + + + + +

ROWID +

ROWNUM +

122 of 347

Keyword H2
SQL:
2016

SQL:
2011

SQL:
2008

SQL:
2003

SQL:
1999 SQL-92

ROWS CS + + + + + +

SELECT + + + + + + +

SYSDATE CS

SYSTIME CS

SYSTIMESTAMP CS

TABLE + + + + + + +

TODAY CS

TOP CS

TRAILING CS + + + + + +

TRUE + + + + + + +

UNION + + + + + + +

UNIQUE + + + + + + +

UNKNOWN + + + + + + +

USING + + + + + + +

VALUES + + + + + + +

WHERE + + + + + + +

WINDOW + + + + +

WITH + + + + + + +

Some keywords in H2 are context-sensitive (CS), such keywords may be used as
identifiers in some places, but cannot be used as identifiers in others. Most
keywords in H2 are also reserved (+) or non-reserved (NR) words in the SQL
Standard. Newer versions of H2 may have more keywords than older ones.

Standards Compliance

This database tries to be as much standard compliant as possible. For the SQL
language, ANSI/ISO is the main standard. There are several versions that refer to
the release date: SQL-92, SQL:1999, and SQL:2003. Unfortunately, the standard
documentation is not freely available. Another problem is that important features
are not standardized. Whenever this is the case, this database tries to be
compatible to other databases.

123 of 347

Supported Character Sets, Character Encoding, and Unicode

H2 internally uses Unicode, and supports all character encoding systems and
character sets supported by the virtual machine you use.

Run as Windows Service

Using a native wrapper / adapter, Java applications can be run as a Windows
Service. There are various tools available to do that. The Java Service Wrapper
from Tanuki Software, Inc. is included in the installation. Batch files are provided
to install, start, stop and uninstall the H2 Database Engine Service. This service
contains the TCP Server and the H2 Console web application. The batch files are
located in the directory h2/service.

The service wrapper bundled with H2 is a 32-bit version. To use a 64-bit version
of Windows (x64), you need to use a 64-bit version of the wrapper, for example
the one from Simon Krenger.

When running the database as a service, absolute path should be used. Using ~
in the database URL is problematic in this case, because it means to use the home
directory of the current user. The service might run without or with the wrong
user, so that the database files might end up in an unexpected place.

Install the Service

The service needs to be registered as a Windows Service first. To do that, double
click on 1_install_service.bat. If successful, a command prompt window will pop
up and disappear immediately. If not, a message will appear.

Start the Service

You can start the H2 Database Engine Service using the service manager of
Windows, or by double clicking on 2_start_service.bat. Please note that the batch
file does not print an error message if the service is not installed.

Connect to the H2 Console

After installing and starting the service, you can connect to the H2 Console
application using a browser. Double clicking on 3_start_browser.bat to do that.
The default port (8082) is hard coded in the batch file.

124 of 347

https://www.krenger.ch/blog/java-service-wrapper-3-5-14-for-windows-x64/
https://wrapper.tanukisoftware.org/

Stop the Service

To stop the service, double click on 4_stop_service.bat. Please note that the batch
file does not print an error message if the service is not installed or started.

Uninstall the Service

To uninstall the service, double click on 5_uninstall_service.bat. If successful, a
command prompt window will pop up and disappear immediately. If not, a
message will appear.

Additional JDBC drivers

To use other databases (for example MySQL), the location of the JDBC drivers of
those databases need to be added to the environment variables H2DRIVERS or
CLASSPATH before installing the service. Multiple drivers can be set; each entry
needs to be separated with a ; (Windows) or : (other operating systems). Spaces
in the path names are supported. The settings must not be quoted.

ODBC Driver

This database does not come with its own ODBC driver at this time, but it
supports the PostgreSQL network protocol. Therefore, the PostgreSQL ODBC
driver can be used. Support for the PostgreSQL network protocol is quite new and
should be viewed as experimental. It should not be used for production
applications.

To use the PostgreSQL ODBC driver on 64 bit versions of Windows, first run
c:/windows/syswow64/odbcad32.exe. At this point you set up your DSN just like
you would on any other system. See also: Re: ODBC Driver on Windows 64 bit

ODBC Installation

First, the ODBC driver must be installed. Any recent PostgreSQL ODBC driver
should work, however version 8.2 (psqlodbc-08_02*) or newer is recommended.
The Windows version of the PostgreSQL ODBC driver is available at
https://www.postgresql.org/ftp/odbc/versions/msi/.

Starting the Server

After installing the ODBC driver, start the H2 Server using the command line:

125 of 347

https://www.postgresql.org/ftp/odbc/versions/msi/
https://www.postgresql.org/message-id/dg76q0khn1@sea.gmane.org

java -cp h2*.jar org.h2.tools.Server

The PG Server (PG for PostgreSQL protocol) is started as well. By default,
databases are stored in the current working directory where the server is started.
Use -baseDir to save databases in another directory, for example the user home
directory:

java -cp h2*.jar org.h2.tools.Server -baseDir ~

The PG server can be started and stopped from within a Java application as
follows:

Server server = Server.createPgServer("-baseDir", "~");
server.start();
...
server.stop();

By default, only connections from localhost are allowed. To allow remote
connections, use -pgAllowOthers when starting the server.

To map an ODBC database name to a different JDBC database name, use the
option -key when starting the server. Please note only one mapping is allowed.
The following will map the ODBC database named TEST to the database URL
jdbc:h2:~/data/test;cipher=aes:

java org.h2.tools.Server -pg -key TEST "~/data/test;cipher=aes"

ODBC Configuration

After installing the driver, a new Data Source must be added. In Windows, run
odbcad32.exe to open the Data Source Administrator. Then click on 'Add...' and
select the PostgreSQL Unicode driver. Then click 'Finish'. You will be able to
change the connection properties. The property column represents the property
key in the odbc.ini file (which may be different from the GUI).

Property Example Remarks

Data Source H2 Test The name of the ODBC Data Source

Database
~/test;ifexi
sts=true

The database name. This can include connections
settings. By default, the database is stored in the
current working directory where the Server is started
except when the -baseDir setting is used. The name
must be at least 3 characters.

126 of 347

Servername localhost
The server name or IP address.
By default, only remote connections are allowed

Username sa The database user name.

SSL
false
(disabled) At this time, SSL is not supported.

Port 5435 The port where the PG Server is listening.

Password sa The database password.

To improve performance, please enable 'server side prepare' under Options /
Datasource / Page 2 / Server side prepare.

Afterwards, you may use this data source.

PG Protocol Support Limitations

At this time, only a subset of the PostgreSQL network protocol is implemented.
Also, there may be compatibility problems on the SQL level, with the catalog, or
with text encoding. Problems are fixed as they are found. Currently, statements
can not be canceled when using the PG protocol. Also, H2 does not provide index
meta over ODBC.

PostgreSQL ODBC Driver Setup requires a database password; that means it is
not possible to connect to H2 databases without password. This is a limitation of
the ODBC driver.

Security Considerations

Currently, the PG Server does not support challenge response or encrypt
passwords. This may be a problem if an attacker can listen to the data transferred
between the ODBC driver and the server, because the password is readable to the
attacker. Also, it is currently not possible to use encrypted SSL connections.
Therefore the ODBC driver should not be used where security is important.

The first connection that opens a database using the PostgreSQL server needs to
be an administrator user. Subsequent connections don't need to be opened by an
administrator.

Using Microsoft Access

When using Microsoft Access to edit data in a linked H2 table, you may need to
enable the following option: Tools - Options - Edit/Find - ODBC fields.

127 of 347

Using H2 in Microsoft .NET

The database can be used from Microsoft .NET even without using Java, by using
IKVM.NET. You can access a H2 database on .NET using the JDBC API, or using
the ADO.NET interface.

Using the ADO.NET API on .NET

An implementation of the ADO.NET interface is available in the open source
project H2Sharp.

Using the JDBC API on .NET

• Install the .NET Framework from Microsoft. Mono has not yet been tested.
• Install IKVM.NET.
• Copy the h2*.jar file to ikvm/bin
• Run the H2 Console using: ikvm -jar h2*.jar
• Convert the H2 Console to an .exe file using: ikvmc -target:winexe h2*.jar.

You may ignore the warnings.
• Create a .dll file using (change the version accordingly): ikvmc.exe

-target:library -version:1.0.69.0 h2*.jar

If you want your C# application use H2, you need to add the h2.dll and the
IKVM.OpenJDK.ClassLibrary.dll to your C# solution. Here some sample code:

using System;
using java.sql;

class Test
{
 static public void Main()
 {
 org.h2.Driver.load();
 Connection conn = DriverManager.getConnection("jdbc:h2:~/test", "sa",
"sa");
 Statement stat = conn.createStatement();
 ResultSet rs = stat.executeQuery("SELECT 'Hello World'");
 while (rs.next())
 {
 Console.WriteLine(rs.getString(1));
 }
 }
}

128 of 347

http://www.ikvm.net/
https://www.microsoft.com/
https://code.google.com/archive/p/h2sharp/

ACID

In the database world, ACID stands for:

• Atomicity: transactions must be atomic, meaning either all tasks are
performed or none.

• Consistency: all operations must comply with the defined constraints.
• Isolation: transactions must be isolated from each other.
• Durability: committed transaction will not be lost.

Atomicity

Transactions in this database are always atomic.

Consistency

By default, this database is always in a consistent state. Referential integrity rules
are enforced except when explicitly disabled.

Isolation

For H2, as with most other database systems, the default isolation level is 'read
committed'. This provides better performance, but also means that transactions
are not completely isolated. H2 supports the transaction isolation levels 'read
uncommitted', 'read committed', 'repeatable read', and 'serializable'.

Durability

This database does not guarantee that all committed transactions survive a power
failure. Tests show that all databases sometimes lose transactions on power
failure (for details, see below). Where losing transactions is not acceptable, a
laptop or UPS (uninterruptible power supply) should be used. If durability is
required for all possible cases of hardware failure, clustering should be used, such
as the H2 clustering mode.

Durability Problems

Complete durability means all committed transaction survive a power failure.
Some databases claim they can guarantee durability, but such claims are wrong.
A durability test was run against H2, HSQLDB, PostgreSQL, and Derby. All of
those databases sometimes lose committed transactions. The test is included in
the H2 download, see org.h2.test.poweroff.Test.

129 of 347

Ways to (Not) Achieve Durability

Making sure that committed transactions are not lost is more complicated than it
seems first. To guarantee complete durability, a database must ensure that the
log record is on the hard drive before the commit call returns. To do that,
databases use different methods. One is to use the 'synchronous write' file access
mode. In Java, RandomAccessFile supports the modes rws and rwd:

• rwd: every update to the file's content is written synchronously to the
underlying storage device.

• rws: in addition to rwd, every update to the metadata is written
synchronously.

A test (org.h2.test.poweroff.TestWrite) with one of those modes achieves around
50 thousand write operations per second. Even when the operating system write
buffer is disabled, the write rate is around 50 thousand operations per second.
This feature does not force changes to disk because it does not flush all buffers.
The test updates the same byte in the file again and again. If the hard drive was
able to write at this rate, then the disk would need to make at least 50 thousand
revolutions per second, or 3 million RPM (revolutions per minute). There are no
such hard drives. The hard drive used for the test is about 7200 RPM, or about
120 revolutions per second. There is an overhead, so the maximum write rate
must be lower than that.

Calling fsync flushes the buffers. There are two ways to do that in Java:

• FileDescriptor.sync(). The documentation says that this forces all system
buffers to synchronize with the underlying device. This method is supposed
to return after all in-memory modified copies of buffers associated with this
file descriptor have been written to the physical medium.

• FileChannel.force(). This method is supposed to force any updates to this
channel's file to be written to the storage device that contains it.

By default, MySQL calls fsync for each commit. When using one of those methods,
only around 60 write operations per second can be achieved, which is consistent
with the RPM rate of the hard drive used. Unfortunately, even when calling
FileDescriptor.sync() or FileChannel.force(), data is not always persisted to the
hard drive, because most hard drives do not obey fsync(): see Your Hard Drive
Lies to You. In Mac OS X, fsync does not flush hard drive buffers. See Bad fsync?.
So the situation is confusing, and tests prove there is a problem.

Trying to flush hard drive buffers is hard, and if you do the performance is very
bad. First you need to make sure that the hard drive actually flushes all buffers.
Tests show that this can not be done in a reliable way. Then the maximum
number of transactions is around 60 per second. Because of those reasons, the
default behavior of H2 is to delay writing committed transactions.

130 of 347

https://lists.apple.com/archives/darwin-dev/2005/Feb/msg00072.html
https://hardware.slashdot.org/story/05/05/13/0529252/your-hard-drive-lies-to-you
https://hardware.slashdot.org/story/05/05/13/0529252/your-hard-drive-lies-to-you

In H2, after a power failure, a bit more than one second of committed
transactions may be lost. To change the behavior, use SET WRITE_DELAY and
CHECKPOINT SYNC. Most other databases support commit delay as well. In the
performance comparison, commit delay was used for all databases that support it.

Running the Durability Test

To test the durability / non-durability of this and other databases, you can use the
test application in the package org.h2.test.poweroff. Two computers with network
connection are required to run this test. One computer just listens, while the test
application is run (and power is cut) on the other computer. The computer with
the listener application opens a TCP/IP port and listens for an incoming
connection. The second computer first connects to the listener, and then created
the databases and starts inserting records. The connection is set to 'autocommit',
which means after each inserted record a commit is performed automatically.
Afterwards, the test computer notifies the listener that this record was inserted
successfully. The listener computer displays the last inserted record number every
10 seconds. Now, switch off the power manually, then restart the computer, and
run the application again. You will find out that in most cases, none of the
databases contains all the records that the listener computer knows about. For
details, please consult the source code of the listener and test application.

Using the Recover Tool

The Recover tool can be used to extract the contents of a database file, even if
the database is corrupted. It also extracts the content of the transaction log and
large objects (CLOB or BLOB). To run the tool, type on the command line:

java -cp h2*.jar org.h2.tools.Recover

For each database in the current directory, a text file will be created. This file
contains raw insert statements (for the data) and data definition (DDL)
statements to recreate the schema of the database. This file can be executed
using the RunScript tool or a RUNSCRIPT FROM SQL statement. The script
includes at least one CREATE USER statement. If you run the script against a
database that was created with the same user, or if there are conflicting users,
running the script will fail. Consider running the script against a database that was
created with a user name that is not in the script.

The Recover tool creates a SQL script from database file. It also processes the
transaction log.

To verify the database can recover at any time, append ;RECOVER_TEST=64 to
the database URL in your test environment. This will simulate an application crash

131 of 347

after each 64 writes to the database file. A log file named
databaseName.h2.db.log is created that lists the operations. The recovery is
tested using an in-memory file system, that means it may require a larger heap
setting.

File Locking Protocols

Multiple concurrent connections to the same database are supported, however a
database file can only be open for reading and writing (in embedded mode) by
one process at the same time. Otherwise, the processes would overwrite each
others data and corrupt the database file. To protect against this problem,
whenever a database is opened, a lock file is created to signal other processes
that the database is in use. If the database is closed, or if the process that
opened the database stops normally, this lock file is deleted.

In special cases (if the process did not terminate normally, for example because
there was a power failure), the lock file is not deleted by the process that created
it. That means the existence of the lock file is not a safe protocol for file locking.
However, this software uses a challenge-response protocol to protect the
database files. There are two methods (algorithms) implemented to provide both
security (that is, the same database files cannot be opened by two processes at
the same time) and simplicity (that is, the lock file does not need to be deleted
manually by the user). The two methods are 'file method' and 'socket methods'.

The file locking protocols (except the file locking method 'FS') have the following
limitation: if a shared file system is used, and the machine with the lock owner is
sent to sleep (standby or hibernate), another machine may take over. If the
machine that originally held the lock wakes up, the database may become
corrupt. If this situation can occur, the application must ensure the database is
closed when the application is put to sleep.

File Locking Method 'File'

The default method for database file locking for version 1.3 and older is the 'File
Method'. The algorithm is:

• If the lock file does not exist, it is created (using the atomic operation
File.createNewFile). Then, the process waits a little bit (20 ms) and checks
the file again. If the file was changed during this time, the operation is
aborted. This protects against a race condition when one process deletes
the lock file just after another one create it, and a third process creates the
file again. It does not occur if there are only two writers.

• If the file can be created, a random number is inserted together with the
locking method ('file'). Afterwards, a watchdog thread is started that checks

132 of 347

regularly (every second once by default) if the file was deleted or modified
by another (challenger) thread / process. Whenever that occurs, the file is
overwritten with the old data. The watchdog thread runs with high priority
so that a change to the lock file does not get through undetected even if the
system is very busy. However, the watchdog thread does use very little
resources (CPU time), because it waits most of the time. Also, the watchdog
only reads from the hard disk and does not write to it.

• If the lock file exists and was recently modified, the process waits for some
time (up to two seconds). If it was still changed, an exception is thrown
(database is locked). This is done to eliminate race conditions with many
concurrent writers. Afterwards, the file is overwritten with a new version
(challenge). After that, the thread waits for 2 seconds. If there is a
watchdog thread protecting the file, he will overwrite the change and this
process will fail to lock the database. However, if there is no watchdog
thread, the lock file will still be as written by this thread. In this case, the file
is deleted and atomically created again. The watchdog thread is started in
this case and the file is locked.

This algorithm is tested with over 100 concurrent threads. In some cases, when
there are many concurrent threads trying to lock the database, they block each
other (meaning the file cannot be locked by any of them) for some time.
However, the file never gets locked by two threads at the same time. However
using that many concurrent threads / processes is not the common use case.
Generally, an application should throw an error to the user if it cannot open a
database, and not try again in a (fast) loop.

File Locking Method 'Socket'

There is a second locking mechanism implemented, but disabled by default. To
use it, append ;FILE_LOCK=SOCKET to the database URL. The algorithm is:

• If the lock file does not exist, it is created. Then a server socket is opened
on a defined port, and kept open. The port and IP address of the process
that opened the database is written into the lock file.

• If the lock file exists, and the lock method is 'file', then the software
switches to the 'file' method.

• If the lock file exists, and the lock method is 'socket', then the process
checks if the port is in use. If the original process is still running, the port is
in use and this process throws an exception (database is in use). If the
original process died (for example due to a power failure, or abnormal
termination of the virtual machine), then the port was released. The new
process deletes the lock file and starts again.

This method does not require a watchdog thread actively polling (reading) the
same file every second. The problem with this method is, if the file is stored on a

133 of 347

network share, two processes (running on different computers) could still open
the same database files, if they do not have a direct TCP/IP connection.

File Locking Method 'FS'

This is the default mode for version 1.4 and newer. This database file locking
mechanism uses native file system lock on the database file. No *.lock.db file is
created in this case, and no background thread is started. This mechanism may
not work on all systems as expected. Some systems allow to lock the same file
multiple times within the same virtual machine, and on some system native file
locking is not supported or files are not unlocked after a power failure.

To enable this feature, append ;FILE_LOCK=FS to the database URL.

This feature is relatively new. When using it for production, please ensure your
system does in fact lock files as expected.

Using Passwords

Using Secure Passwords

Remember that weak passwords can be broken regardless of the encryption and
security protocols. Don't use passwords that can be found in a dictionary.
Appending numbers does not make passwords secure. A way to create good
passwords that can be remembered is: take the first letters of a sentence, use
upper and lower case characters, and creatively include special characters (but it's
more important to use a long password than to use special characters). Example:

i'sE2rtPiUKtT from the sentence it's easy to remember this password if you know
the trick.

Passwords: Using Char Arrays instead of Strings

Java strings are immutable objects and cannot be safely 'destroyed' by the
application. After creating a string, it will remain in the main memory of the
computer at least until it is garbage collected. The garbage collection cannot be
controlled by the application, and even if it is garbage collected the data may still
remain in memory. It might also be possible that the part of memory containing
the password is swapped to disk (if not enough main memory is available), which
is a problem if the attacker has access to the swap file of the operating system.

134 of 347

It is a good idea to use char arrays instead of strings for passwords. Char arrays
can be cleared (filled with zeros) after use, and therefore the password will not be
stored in the swap file.

This database supports using char arrays instead of string to pass user and file
passwords. The following code can be used to do that:

import java.sql.*;
import java.util.*;
public class Test {
 public static void main(String[] args) throws Exception {
 String url = "jdbc:h2:~/test";
 Properties prop = new Properties();
 prop.setProperty("user", "sa");
 System.out.print("Password?");
 char[] password = System.console().readPassword();
 prop.put("password", password);
 Connection conn = null;
 try {
 conn = DriverManager.getConnection(url, prop);
 } finally {
 Arrays.fill(password, (char) 0);
 }
 conn.close();
 }
}

When using Swing, use javax.swing.JPasswordField.

Passing the User Name and/or Password in the URL

Instead of passing the user name as a separate parameter as in Connection conn
= DriverManager. getConnection("jdbc:h2:~/test", "sa", "123"); the user name
(and/or password) can be supplied in the URL itself: Connection conn =
DriverManager. getConnection("jdbc:h2:~/test;USER=sa;PASSWORD=123"); The
settings in the URL override the settings passed as a separate parameter.

Password Hash

Sometimes the database password needs to be stored in a configuration file (for
example in the web.xml file). In addition to connecting with the plain text
password, this database supports connecting with the password hash. This means
that only the hash of the password (and not the plain text password) needs to be
stored in the configuration file. This will only protect others from reading or re-

135 of 347

constructing the plain text password (even if they have access to the
configuration file); it does not protect others from accessing the database using
the password hash.

To connect using the password hash instead of plain text password, append
;PASSWORD_HASH=TRUE to the database URL, and replace the password with
the password hash. To calculate the password hash from a plain text password,
run the following command within the H2 Console tool: @password_hash
<upperCaseUserName> <password>. As an example, if the user name is sa and
the password is test, run the command @password_hash SA test. Then use the
resulting password hash as you would use the plain text password. When using
an encrypted database, then the user password and file password need to be
hashed separately. To calculate the hash of the file password, run:
@password_hash file <filePassword>.

Protection against SQL Injection

What is SQL Injection

This database engine provides a solution for the security vulnerability known as
'SQL Injection'. Here is a short description of what SQL injection means. Some
applications build SQL statements with embedded user input such as:

String sql = "SELECT * FROM USERS WHERE PASSWORD='"+pwd+"'";
ResultSet rs = conn.createStatement().executeQuery(sql);

If this mechanism is used anywhere in the application, and user input is not
correctly filtered or encoded, it is possible for a user to inject SQL functionality or
statements by using specially built input such as (in this example) this password: '
OR ''='. In this case the statement becomes:

SELECT * FROM USERS WHERE PASSWORD='' OR ''='';

Which is always true no matter what the password stored in the database is. For
more information about SQL Injection, see Glossary and Links.

Disabling Literals

SQL Injection is not possible if user input is not directly embedded in SQL
statements. A simple solution for the problem above is to use a prepared
statement:

String sql = "SELECT * FROM USERS WHERE PASSWORD=?";

136 of 347

PreparedStatement prep = conn.prepareStatement(sql);
prep.setString(1, pwd);
ResultSet rs = prep.executeQuery();

This database provides a way to enforce usage of parameters when passing user
input to the database. This is done by disabling embedded literals in SQL
statements. To do this, execute the statement:

SET ALLOW_LITERALS NONE;

Afterwards, SQL statements with text and number literals are not allowed any
more. That means, SQL statement of the form WHERE NAME='abc' or WHERE
CustomerId=10 will fail. It is still possible to use prepared statements and
parameters as described above. Also, it is still possible to generate SQL
statements dynamically, and use the Statement API, as long as the SQL
statements do not include literals. There is also a second mode where number
literals are allowed: SET ALLOW_LITERALS NUMBERS. To allow all literals,
execute SET ALLOW_LITERALS ALL (this is the default setting). Literals can only
be enabled or disabled by an administrator.

Using Constants

Disabling literals also means disabling hard-coded 'constant' literals. This database
supports defining constants using the CREATE CONSTANT command. Constants
can be defined only when literals are enabled, but used even when literals are
disabled. To avoid name clashes with column names, constants can be defined in
other schemas:

CREATE SCHEMA CONST AUTHORIZATION SA;
CREATE CONSTANT CONST.ACTIVE VALUE 'Active';
CREATE CONSTANT CONST.INACTIVE VALUE 'Inactive';
SELECT * FROM USERS WHERE TYPE=CONST.ACTIVE;

Even when literals are enabled, it is better to use constants instead of hard-coded
number or text literals in queries or views. With constants, typos are found at
compile time, the source code is easier to understand and change.

Using the ZERO() Function

It is not required to create a constant for the number 0 as there is already a built-
in function ZERO():

SELECT * FROM USERS WHERE LENGTH(PASSWORD)=ZERO();

137 of 347

Protection against Remote Access

By default this database does not allow connections from other machines when
starting the H2 Console, the TCP server, or the PG server. Remote access can be
enabled using the command line options -webAllowOthers, -tcpAllowOthers,
-pgAllowOthers.

If you enable remote access using -tcpAllowOthers or -pgAllowOthers, please also
consider using the options -baseDir, so that remote users can not create new
databases or access existing databases with weak passwords. When using the
option -baseDir, only databases within that directory may be accessed. Ensure the
existing accessible databases are protected using strong passwords.

If you enable remote access using -webAllowOthers, please ensure the web
server can only be accessed from trusted networks. The options -baseDir don't
protect access to the tools section, prevent remote shutdown of the web server,
changes to the preferences, the saved connection settings, or access to other
databases accessible from the system.

Restricting Class Loading and Usage

By default there is no restriction on loading classes and executing Java code for
admins. That means an admin may call system functions such as
System.setProperty by executing:

CREATE ALIAS SET_PROPERTY FOR "java.lang.System.setProperty";
CALL SET_PROPERTY('abc', '1');
CREATE ALIAS GET_PROPERTY FOR "java.lang.System.getProperty";
CALL GET_PROPERTY('abc');

To restrict users (including admins) from loading classes and executing code, the
list of allowed classes can be set in the system property h2.allowedClasses in the
form of a comma separated list of classes or patterns (items ending with *). By
default all classes are allowed. Example:

java -Dh2.allowedClasses=java.lang.Math,com.acme.*

This mechanism is used for all user classes, including database event listeners,
trigger classes, user-defined functions, user-defined aggregate functions, and
JDBC driver classes (with the exception of the H2 driver) when using the H2
Console.

138 of 347

Security Protocols

The following paragraphs document the security protocols used in this database.
These descriptions are very technical and only intended for security experts that
already know the underlying security primitives.

User Password Encryption

When a user tries to connect to a database, the combination of user name, @,
and password are hashed using SHA-256, and this hash value is transmitted to
the database. This step does not protect against an attacker that re-uses the
value if he is able to listen to the (unencrypted) transmission between the client
and the server. But, the passwords are never transmitted as plain text, even when
using an unencrypted connection between client and server. That means if a user
reuses the same password for different things, this password is still protected up
to some point. See also 'RFC 2617 - HTTP Authentication: Basic and Digest Access
Authentication' for more information.

When a new database or user is created, a new random salt value is generated.
The size of the salt is 64 bits. Using the random salt reduces the risk of an
attacker pre-calculating hash values for many different (commonly used)
passwords.

The combination of user-password hash value (see above) and salt is hashed
using SHA-256. The resulting value is stored in the database. When a user tries to
connect to the database, the database combines user-password hash value with
the stored salt value and calculates the hash value. Other products use multiple
iterations (hash the hash value again and again), but this is not done in this
product to reduce the risk of denial of service attacks (where the attacker tries to
connect with bogus passwords, and the server spends a lot of time calculating the
hash value for each password). The reasoning is: if the attacker has access to the
hashed passwords, he also has access to the data in plain text, and therefore
does not need the password any more. If the data is protected by storing it on
another computer and only accessible remotely, then the iteration count is not
required at all.

File Encryption

The database files can be encrypted using the AES-128 algorithm.

When a user tries to connect to an encrypted database, the combination of file@
and the file password is hashed using SHA-256. This hash value is transmitted to
the server.

139 of 347

When a new database file is created, a new cryptographically secure random salt
value is generated. The size of the salt is 64 bits. The combination of the file
password hash and the salt value is hashed 1024 times using SHA-256. The
reason for the iteration is to make it harder for an attacker to calculate hash
values for common passwords.

The resulting hash value is used as the key for the block cipher algorithm. Then,
an initialization vector (IV) key is calculated by hashing the key again using SHA-
256. This is to make sure the IV is unknown to the attacker. The reason for using
a secret IV is to protect against watermark attacks.

Before saving a block of data (each block is 8 bytes long), the following
operations are executed: first, the IV is calculated by encrypting the block number
with the IV key (using the same block cipher algorithm). This IV is combined with
the plain text using XOR. The resulting data is encrypted using the AES-128
algorithm.

When decrypting, the operation is done in reverse. First, the block is decrypted
using the key, and then the IV is calculated combined with the decrypted text
using XOR.

Therefore, the block cipher mode of operation is CBC (cipher-block chaining), but
each chain is only one block long. The advantage over the ECB (electronic
codebook) mode is that patterns in the data are not revealed, and the advantage
over multi block CBC is that flipped cipher text bits are not propagated to flipped
plaintext bits in the next block.

Database encryption is meant for securing the database while it is not in use
(stolen laptop and so on). It is not meant for cases where the attacker has access
to files while the database is in use. When he has write access, he can for
example replace pieces of files with pieces of older versions and manipulate data
like this.

File encryption slows down the performance of the database engine. Compared to
unencrypted mode, database operations take about 2.5 times longer using AES
(embedded mode).

Wrong Password / User Name Delay

To protect against remote brute force password attacks, the delay after each
unsuccessful login gets double as long. Use the system properties
h2.delayWrongPasswordMin and h2.delayWrongPasswordMax to change the
minimum (the default is 250 milliseconds) or maximum delay (the default is 4000
milliseconds, or 4 seconds). The delay only applies for those using the wrong
password. Normally there is no delay for a user that knows the correct password,

140 of 347

with one exception: after using the wrong password, there is a delay of up to
(randomly distributed) the same delay as for a wrong password. This is to protect
against parallel brute force attacks, so that an attacker needs to wait for the
whole delay. Delays are synchronized. This is also required to protect against
parallel attacks.

There is only one exception message for both wrong user and for wrong
password, to make it harder to get the list of user names. It is not possible from
the stack trace to see if the user name was wrong or the password.

HTTPS Connections

The web server supports HTTP and HTTPS connections using SSLServerSocket.
There is a default self-certified certificate to support an easy starting point, but
custom certificates are supported as well.

TLS Connections

Remote TLS connections are supported using the Java Secure Socket Extension
(SSLServerSocket, SSLSocket). By default, anonymous TLS is enabled.

To use your own keystore, set the system properties javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword before starting the H2 server and client. See also
Customizing the Default Key and Trust Stores, Store Types, and Store Passwords
for more information.

To disable anonymous TLS, set the system property h2.enableAnonymousTLS to
false.

Universally Unique Identifiers (UUID)

This database supports UUIDs. Also supported is a function to create new UUIDs
using a cryptographically strong pseudo random number generator. With random
UUIDs, the chance of two having the same value can be calculated using the
probability theory. See also 'Birthday Paradox'. Standardized randomly generated
UUIDs have 122 random bits. 4 bits are used for the version (Randomly
generated UUID), and 2 bits for the variant (Leach-Salz). This database supports
generating such UUIDs using the built-in function RANDOM_UUID() or UUID().
Here is a small program to estimate the probability of having two identical UUIDs
after generating a number of values:

public class Test {
 public static void main(String[] args) throws Exception {
 double x = Math.pow(2, 122);

141 of 347

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

 for (int i = 35; i < 62; i++) {
 double n = Math.pow(2, i);
 double p = 1 - Math.exp(-(n * n) / 2 / x);
 System.out.println("2^" + i + "=" + (1L << i) +
 " probability: 0" +
 String.valueOf(1 + p).substring(1));
 }
 }
}

Some values are:

Number of UUIs Probability of Duplicates

2^36=68'719'476'736 0.000'000'000'000'000'4

2^41=2'199'023'255'552 0.000'000'000'000'4

2^46=70'368'744'177'664 0.000'000'000'4

To help non-mathematicians understand what those numbers mean, here a
comparison: one's annual risk of being hit by a meteorite is estimated to be one
chance in 17 billion, that means the probability is about 0.000'000'000'06.

Spatial Features

H2 supports the geometry data type and spatial indexes. Here is an example SQL
script to create a table with a spatial column and index:

CREATE TABLE GEO_TABLE(GID SERIAL, THE_GEOM GEOMETRY);
INSERT INTO GEO_TABLE(THE_GEOM) VALUES
 ('POINT(500 505)'),
 ('LINESTRING(550 551, 525 512, 565 566)'),
 ('POLYGON ((550 521, 580 540, 570 564, 512 566, 550 521))');
CREATE SPATIAL INDEX GEO_TABLE_SPATIAL_INDEX
 ON GEO_TABLE(THE_GEOM);

To query the table using geometry envelope intersection, use the operation &&,
as in PostGIS:

SELECT * FROM GEO_TABLE
 WHERE THE_GEOM &&
 'POLYGON ((490 490, 536 490, 536 515, 490 515, 490 490))';

You can verify that the spatial index is used using the "explain plan" feature:

142 of 347

EXPLAIN SELECT * FROM GEO_TABLE
 WHERE THE_GEOM &&
 'POLYGON ((490 490, 536 490, 536 515, 490 515, 490 490))';
-- Result
SELECT
 "GEO_TABLE"."GID",
 "GEO_TABLE"."THE_GEOM"
FROM "PUBLIC"."GEO_TABLE"
 /* PUBLIC.GEO_TABLE_SPATIAL_INDEX:
 THE_GEOM &&
 'POLYGON ((490 490, 536 490, 536 515, 490 515, 490 490))'::Geometry */
WHERE INTERSECTS("THE_GEOM",
 'POLYGON ((490 490, 536 490, 536 515, 490 515, 490 490))'::Geometry)

For persistent databases, the spatial index is stored on disk; for in-memory
databases, the index is kept in memory.

Recursive Queries

H2 has experimental support for recursive queries using so called "common table
expressions" (CTE). Examples:

WITH RECURSIVE T(N) AS (
 SELECT 1
 UNION ALL
 SELECT N+1 FROM T WHERE N<10
)
SELECT * FROM T;
-- returns the values 1 .. 10

WITH RECURSIVE T(N) AS (
 SELECT 1
 UNION ALL
 SELECT N*2 FROM T WHERE N<10
)
SELECT * FROM T;
-- returns the values 1, 2, 4, 8, 16

CREATE TABLE FOLDER(ID INT PRIMARY KEY, NAME VARCHAR(255), PARENT
INT);

INSERT INTO FOLDER VALUES(1, null, null), (2, 'src', 1),
(3, 'main', 2), (4, 'org', 3), (5, 'test', 2);

143 of 347

WITH LINK(ID, NAME, LEVEL) AS (
 SELECT ID, NAME, 0 FROM FOLDER WHERE PARENT IS NULL
 UNION ALL
 SELECT FOLDER.ID, IFNULL(LINK.NAME || '/', '') || FOLDER.NAME, LEVEL + 1
 FROM LINK INNER JOIN FOLDER ON LINK.ID = FOLDER.PARENT
)
SELECT NAME FROM LINK WHERE NAME IS NOT NULL ORDER BY ID;
-- src
-- src/main
-- src/main/org
-- src/test

Limitations: Recursive queries need to be of the type UNION ALL, and the
recursion needs to be on the second part of the query. No tables or views with
the name of the table expression may exist. Different table expression names
need to be used when using multiple distinct table expressions within the same
transaction and for the same session. All columns of the table expression are of
type VARCHAR, and may need to be cast to the required data type. Views with
recursive queries are not supported. Subqueries and INSERT INTO ... FROM with
recursive queries are not supported. Parameters are only supported within the last
SELECT statement (a workaround is to use session variables like @start within the
table expression). The syntax is:

WITH RECURSIVE recursiveQueryName(columnName, ...) AS (
 nonRecursiveSelect
 UNION ALL
 recursiveSelect
)
select

Settings Read from System Properties

Some settings of the database can be set on the command line using
-DpropertyName=value. It is usually not required to change those settings
manually. The settings are case sensitive. Example:

java -Dh2.serverCachedObjects=256 org.h2.tools.Server

The current value of the settings can be read in the table
INFORMATION_SCHEMA.SETTINGS.

For a complete list of settings, see SysProperties.

144 of 347

https://h2database.com/javadoc/org/h2/engine/SysProperties.html

Setting the Server Bind Address

Usually server sockets accept connections on any/all local addresses. This may be
a problem on multi-homed hosts. To bind only to one address, use the system
property h2.bindAddress. This setting is used for both regular server sockets and
for TLS server sockets. IPv4 and IPv6 address formats are supported.

Pluggable File System

This database supports a pluggable file system API. The file system
implementation is selected using a file name prefix. Internally, the interfaces are
very similar to the Java 7 NIO2 API, but do not (yet) use or require Java 7. The
following file systems are included:

• zip: read-only zip-file based file system. Format:
zip:~/zipFileName!/fileName.

• split: file system that splits files in 1 GB files (stackable with other file
systems).

• nio: file system that uses FileChannel instead of RandomAccessFile (faster in
some operating systems).

• nioMapped: file system that uses memory mapped files (faster in some
operating systems). Please note that there currently is a file size limitation of
2 GB when using this file system. To work around this limitation, combine it
with the split file system: split:nioMapped:~/test.

• async: experimental file system that uses AsynchronousFileChannel instead
of RandomAccessFile (faster in some operating systems).

• memFS: in-memory file system (slower than mem; experimental; mainly
used for testing the database engine itself).

• memLZF: compressing in-memory file system (slower than memFS but uses
less memory; experimental; mainly used for testing the database engine
itself).

• nioMemFS: stores data outside of the VM's heap - useful for large memory
DBs without incurring GC costs.

• nioMemLZF: stores compressed data outside of the VM's heap - useful for
large memory DBs without incurring GC costs. Use "nioMemLZF:12:" to
tweak the % of blocks that are stored uncompressed. If you size this to
your working set correctly, compressed storage is roughly the same
performance as uncompressed. The default value is 1%.

As an example, to use the nio file system with PageStore storage engine, use the
following database URL: jdbc:h2:nio:~/test;MV_STORE=FALSE. With MVStore
storage engine nio file system is used by default.

To register a new file system, extend the classes org.h2.store.fs.FilePath,
FileBase, and call the method FilePath.register before using it.

145 of 347

For input streams (but not for random access files), URLs may be used in addition
to the registered file systems. Example:
jar:file:///c:/temp/example.zip!/org/example/nested.csv. To read a stream from
the classpath, use the prefix classpath:, as in
classpath:/org/h2/samples/newsfeed.sql.

Split File System

The file system prefix split: is used to split logical files into multiple physical files,
for example so that a database can get larger than the maximum file system size
of the operating system. If the logical file is larger than the maximum file size,
then the file is split as follows:

• <fileName> (first block, is always created)
• <fileName>.1.part (second block)

More physical files (*.2.part, *.3.part) are automatically created / deleted if
needed. The maximum physical file size of a block is 2^30 bytes, which is also
called 1 GiB or 1 GB. However this can be changed if required, by specifying the
block size in the file name. The file name format is: split:<x>:<fileName> where
the file size per block is 2^x. For 1 MiB block sizes, use x = 20 (because 2^20 is 1
MiB). The following file name means the logical file is split into 1 MiB blocks:
split:20:~/test.h2.db. An example database URL for this case is
jdbc:h2:split:20:~/test.

Database Upgrade

In version 1.2, H2 introduced a new file store implementation which is
incompatible to the one used in versions < 1.2. To automatically convert
databases to the new file store, it is necessary to include an additional jar file. The
file can be found at https://h2database.com/h2mig_pagestore_addon.jar . If this
file is in the classpath, every connect to an older database will result in a
conversion process.

The conversion itself is done internally via 'script to' and 'runscript from'. After the
conversion process, the files will be renamed from

• dbName.data.db to dbName.data.db.backup
• dbName.index.db to dbName.index.db.backup

by default. Also, the temporary script will be written to the database directory
instead of a temporary directory. Both defaults can be customized via

• org.h2.upgrade.DbUpgrade.setDeleteOldDb(boolean)
• org.h2.upgrade.DbUpgrade.setScriptInTmpDir(boolean)

146 of 347

https://h2database.com/h2mig_pagestore_addon.jar

prior opening a database connection.

Since version 1.2.140 it is possible to let the old h2 classes (v 1.2.128) connect to
the database. The automatic upgrade .jar file must be present, and the URL must
start with jdbc:h2v1_1: (the JDBC driver class is org.h2.upgrade.v1_1.Driver). If
the database should automatically connect using the old version if a database
with the old format exists (without upgrade), and use the new version otherwise,
then append ;NO_UPGRADE=TRUE to the database URL. Please note the old
driver did not process the system property "h2.baseDir" correctly, so that using
this setting is not supported when upgrading.

Java Objects Serialization

Java objects serialization is enabled by default for columns of type OTHER, using
standard Java serialization/deserialization semantics.

To disable this feature set the system property h2.serializeJavaObject=false
(default: true).

Serialization and deserialization of java objects is customizable both at system
level and at database level providing a JavaObjectSerializer implementation:

• At system level set the system property h2.javaObjectSerializer with the
Fully Qualified Name of the JavaObjectSerializer interface implementation. It
will be used over the entire JVM session to (de)serialize java objects being
stored in column of type OTHER. Example
h2.javaObjectSerializer=com.acme.SerializerClassName.

• At database level execute the SQL statement SET
JAVA_OBJECT_SERIALIZER 'com.acme.SerializerClassName' or append
;JAVA_OBJECT_SERIALIZER='com.acme.SerializerClassName' to the
database URL:
jdbc:h2:~/test;JAVA_OBJECT_SERIALIZER='com.acme.SerializerClassName'.

Please note that this SQL statement can only be executed before any tables
are defined.

Custom Data Types Handler API

It is possible to extend the type system of the database by providing your own
implementation of minimal required API basically consisting of type identification
and conversion routines.

In order to enable this feature, set the system property
h2.customDataTypesHandler (default: null) to the fully qualified name of the class

147 of 347

https://h2database.com/javadoc/org/h2/api/JavaObjectSerializer.html

providing CustomDataTypesHandler interface implementation.
The instance of that class will be created by H2 and used to:

• resolve the names and identifiers of extrinsic data types.
• convert values of extrinsic data types to and from values of built-in types.
• provide order of the data types.

This is a system-level setting, i.e. affects all the databases.

Note: Please keep in mind that this feature may not possibly provide the same
ABI stability level as other features as it exposes many of the H2 internals. You
may be required to update your code occasionally due to internal changes in H2 if
you are going to use this feature.

Limits and Limitations

This database has the following known limitations:

• Database file size limit: 4 TB (using the default page size of 2 KB) or higher
(when using a larger page size). This limit is including CLOB and BLOB data.

• The maximum file size for FAT or FAT32 file systems is 4 GB. That means
when using FAT or FAT32, the limit is 4 GB for the data. This is the
limitation of the file system. The database does provide a workaround for
this problem, it is to use the file name prefix split:. In that case files are split
into files of 1 GB by default. An example database URL is:
jdbc:h2:split:~/test.

• The maximum number of rows per table is 2^64.
• The maximum number of open transactions is 65535.
• Main memory requirements: The larger the database, the more main

memory is required. With the current storage mechanism (the page store),
the minimum main memory required is around 1 MB for each 8 GB database
file size.

• Limit on the complexity of SQL statements. Statements of the following form
will result in a stack overflow exception:

SELECT * FROM DUAL WHERE X = 1
OR X = 2 OR X = 2 OR X = 2 OR X = 2 OR X = 2
-- repeat previous line 500 times --

• There is no limit for the following entities, except the memory and storage
capacity: maximum identifier length (table name, column name, and so on);
maximum number of tables, columns, indexes, triggers, and other database
objects; maximum statement length, number of parameters per statement,
tables per statement, expressions in order by, group by, having, and so on;
maximum rows per query; maximum columns per table, columns per index,

148 of 347

https://h2database.com/javadoc/org/h2/api/CustomDataTypesHandler.html

indexes per table, lob columns per table, and so on; maximum row length,
index row length, select row length; maximum length of a varchar column,
decimal column, literal in a statement.

• Querying from the metadata tables is slow if there are many tables
(thousands).

• For limitations on data types, see the documentation of the respective Java
data type or the data type documentation of this database.

Glossary and Links

Term Description

AES-128
A block encryption algorithm. See also: Wikipedia: Advanced
Encryption Standard

Birthday
Paradox

Describes the higher than expected probability that two persons
in a room have the same birthday. Also valid for randomly
generated UUIDs. See also: Wikipedia: Birthday problem

Digest
Protocol to protect a password (but not to protect data). See
also: RFC 2617: HTTP Digest Access Authentication

HTTPS
A protocol to provide security to HTTP connections. See also: RFC
2818: HTTP Over TLS

Modes of
Operation Wikipedia: Block cipher mode of operation

Salt
Random number to increase the security of passwords. See also:
Wikipedia: Key derivation function

SHA-256
A cryptographic one-way hash function. See also: Wikipedia:
Secure Hash Algorithms

SQL Injection
A security vulnerability where an application embeds SQL
statements or expressions in user input. See also: Wikipedia: SQL
injection

Watermark
Attack

Security problem of certain encryption programs where the
existence of certain data can be proven without decrypting. For
more information, search in the internet for 'watermark attack
cryptoloop'

SSL/TLS
Secure Sockets Layer / Transport Layer Security. See also: Java
Secure Socket Extension (JSSE)

149 of 347

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/SQL_injection
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://www.ietf.org/rfc/rfc2818.txt
https://www.ietf.org/rfc/rfc2818.txt
https://www.ietf.org/rfc/rfc2617.txt
https://en.wikipedia.org/wiki/Birthday_problem
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Commands

Index

Commands (Data Manipulation)

SELECT
INSERT
UPDATE
DELETE
BACKUP
CALL
EXECUTE IMMEDIATE
EXPLAIN
MERGE INTO
MERGE USING
RUNSCRIPT
SCRIPT
SHOW
Explicit table
Table value
WITH

Commands (Data Definition)

ALTER INDEX RENAME
ALTER SCHEMA RENAME
ALTER SEQUENCE
ALTER TABLE ADD
ALTER TABLE ADD CONSTRAINT
ALTER TABLE RENAME CONSTRAINT
ALTER TABLE ALTER COLUMN
ALTER TABLE DROP COLUMN
ALTER TABLE DROP CONSTRAINT
ALTER TABLE SET
ALTER TABLE RENAME
ALTER USER ADMIN
ALTER USER RENAME
ALTER USER SET PASSWORD
ALTER VIEW RECOMPILE
ALTER VIEW RENAME
ANALYZE

150 of 347

COMMENT
CREATE AGGREGATE
CREATE ALIAS
CREATE CONSTANT
CREATE DOMAIN
CREATE INDEX
CREATE LINKED TABLE
CREATE ROLE
CREATE SCHEMA
CREATE SEQUENCE
CREATE TABLE
CREATE TRIGGER
CREATE USER
CREATE VIEW
DROP AGGREGATE
DROP ALIAS
DROP ALL OBJECTS
DROP CONSTANT
DROP DOMAIN
DROP INDEX
DROP ROLE
DROP SCHEMA
DROP SEQUENCE
DROP TABLE
DROP TRIGGER
DROP USER
DROP VIEW
TRUNCATE TABLE

Commands (Other)

CHECKPOINT
CHECKPOINT SYNC
COMMIT
COMMIT TRANSACTION
GRANT RIGHT
GRANT ALTER ANY SCHEMA
GRANT ROLE
HELP
PREPARE COMMIT
REVOKE RIGHT
REVOKE ROLE
ROLLBACK
ROLLBACK TRANSACTION

151 of 347

SAVEPOINT
SET @
SET ALLOW_LITERALS
SET AUTOCOMMIT
SET CACHE_SIZE
SET CLUSTER
SET BINARY_COLLATION
SET UUID_COLLATION
SET BUILTIN_ALIAS_OVERRIDE
SET CATALOG
SET COLLATION
SET COMPRESS_LOB
SET DATABASE_EVENT_LISTENER
SET DB_CLOSE_DELAY
SET DEFAULT_LOCK_TIMEOUT
SET DEFAULT_TABLE_TYPE
SET EXCLUSIVE
SET IGNORECASE
SET IGNORE_CATALOGS
SET JAVA_OBJECT_SERIALIZER
SET LAZY_QUERY_EXECUTION
SET LOG
SET LOCK_MODE
SET LOCK_TIMEOUT
SET MAX_LENGTH_INPLACE_LOB
SET MAX_LOG_SIZE
SET MAX_MEMORY_ROWS
SET MAX_MEMORY_UNDO
SET MAX_OPERATION_MEMORY
SET MODE
SET OPTIMIZE_REUSE_RESULTS
SET PASSWORD
SET QUERY_STATISTICS
SET QUERY_STATISTICS_MAX_ENTRIES
SET QUERY_TIMEOUT
SET REFERENTIAL_INTEGRITY
SET RETENTION_TIME
SET SALT HASH
SET SCHEMA
SET SCHEMA_SEARCH_PATH
SET SESSION CHARACTERISTICS
SET THROTTLE
SET TRACE_LEVEL
SET TRACE_MAX_FILE_SIZE
SET UNDO_LOG

152 of 347

SET WRITE_DELAY
SHUTDOWN

Commands (Data Manipulation)

SELECT

SELECT [TOP term [PERCENT] [WITH TIES]]
[DISTINCT [ON (expression [,...])] | ALL]
selectExpression [,...]
[FROM tableExpression [,...]]
[WHERE expression]
[GROUP BY groupingElement [,...]] [HAVING expression]
[WINDOW { { windowName AS windowSpecification } [,...] }]
[QUALIFY expression]
[{ UNION [ALL] | EXCEPT | MINUS | INTERSECT } query]
[ORDER BY order [,...]]
[LIMIT expression [OFFSET expression] [SAMPLE_SIZE rowCountInt]]
[[OFFSET expression { ROW | ROWS }]
[FETCH { FIRST | NEXT } [expression [PERCENT]] { ROW | ROWS }
 { ONLY | WITH TIES }] [SAMPLE_SIZE rowCountInt]]
[FOR UPDATE]

Selects data from a table or multiple tables.

Command is executed in the following logical order:

1. Data is taken from table value expressions that are specified in the FROM
clause, joins are executed. If FROM clause is not specified a single row is
constructed.

2. WHERE filters rows. Aggregate or window functions are not allowed in this
clause.

3. GROUP BY groups the result by the given expression(s). If GROUP BY clause is
not specified, but non-window aggregate functions are used or HAVING is
specified all rows are grouped together.

4. Aggregate functions are evaluated, SAMPLE_SIZE limits the number of rows
read.

5. HAVING filters rows after grouping and evaluation of aggregate functions. Non-
window aggregate functions are allowed in this clause.

6. Window functions are evaluated.
153 of 347

7. QUALIFY filters rows after evaluation of window functions. Aggregate and
window functions are allowed in this clause.

8. DISTINCT removes duplicates. If DISTINCT ON is used only the specified
expressions are checked for duplicates; ORDER BY clause, if any, is used to
determine preserved rows. First row is each DISTINCT ON group is preserved. In
absence of ORDER BY preserved rows are not determined, database may choose
any row from each DISTINCT ON group.

9. UNION, EXCEPT (MINUS), and INTERSECT combine the result of this query
with the results of another query. Multiple set operators (UNION, INTERSECT,
MINUS, EXCEPT) are evaluated from left to right. For compatibility with other
databases and future versions of H2 please use parentheses.

10. ORDER BY sorts the result by the given column(s) or expression(s).

11. Number of rows in output can be limited either with standard OFFSET /
FETCH, with non-standard LIMIT / OFFSET, or with non-standard TOP clauses.
Different clauses cannot be used together. OFFSET specifies how many rows to
skip. Please note that queries with high offset values can be slow. FETCH
FIRST/NEXT, LIMIT or TOP limits the number of rows returned by the query (no
limit if null or smaller than zero). If PERCENT is specified number of rows is
specified as a percent of the total number of rows and should be an integer value
between 0 and 100 inclusive. WITH TIES can be used only together with ORDER
BY and means that all additional rows that have the same sorting position as the
last row will be also returned.

WINDOW clause specifies window definitions for window functions and window
aggregate functions. This clause can be used to reuse the same definition in
multiple functions.

If FOR UPDATE is specified, the tables or rows are locked for writing. This clause
is not allowed in DISTINCT queries and in queries with non-window aggregates,
GROUP BY, or HAVING clauses. When using default MVStore engine only the
selected rows are locked as in an UPDATE statement. Rows from the right side of
a left join and from the left side of a right join, including nested joins, aren't
locked. Locking behavior for rows that were excluded from result using OFFSET /
FETCH / LIMIT / TOP or QUALIFY is undefined, to avoid possible locking of
excessive rows try to filter out unneeded rows with the WHERE criteria when
possible. Rows are processed one by one. Each row is read, tested with WHERE
criteria, locked, read again and re-tested, because its value may be changed by
concurrent transaction before lock acquisition. The returned row represents the
latest committed values and may violate isolation level requirements of the
current transaction. Note that new uncommitted rows from other transactions are
not visible unless read uncommitted isolation level is used and therefore cannot
be selected and locked. Modified uncommitted rows from other transactions that

154 of 347

satisfy the WHERE criteria cause this SELECT to wait for commit or rollback of
those transactions. With PageStore engine the whole tables are locked; to avoid
deadlocks with this engine always lock the tables in the same order in all
transactions.

Example:

SELECT * FROM TEST;
SELECT * FROM TEST ORDER BY NAME;
SELECT ID, COUNT(*) FROM TEST GROUP BY ID;
SELECT NAME, COUNT(*) FROM TEST GROUP BY NAME HAVING COUNT(*) > 2;
SELECT 'ID' COL, MAX(ID) AS MAX FROM TEST UNION SELECT 'NAME',
MAX(NAME) FROM TEST;
SELECT * FROM TEST OFFSET 1000 ROWS FETCH FIRST 1000 ROWS ONLY;
SELECT A, B FROM TEST ORDER BY A FETCH FIRST 10 ROWS WITH TIES;
SELECT * FROM (SELECT ID, COUNT(*) FROM TEST
 GROUP BY ID UNION SELECT NULL, COUNT(*) FROM TEST)
 ORDER BY 1 NULLS LAST;
SELECT DISTINCT C1, C2 FROM TEST;
SELECT DISTINCT ON(C1) C1, C2 FROM TEST ORDER BY C1;

INSERT

INSERT INTO tableName insertColumnsAndSource

Inserts a new row / new rows into a table.

When using DIRECT, then the results from the query are directly applied in the
target table without any intermediate step.

When using SORTED, b-tree pages are split at the insertion point. This can
improve performance and reduce disk usage.

Example:

INSERT INTO TEST VALUES(1, 'Hello')

UPDATE

UPDATE tableName [[AS] newTableAlias] SET setClauseList
[WHERE expression] [ORDER BY order [,...]] [LIMIT expression]

Updates data in a table. ORDER BY is supported for MySQL compatibility, but it is
ignored.

155 of 347

Example:

UPDATE TEST SET NAME='Hi' WHERE ID=1;
UPDATE PERSON P SET NAME=(SELECT A.NAME FROM ADDRESS A WHERE
A.ID=P.ID);

DELETE

DELETE [TOP term] FROM tableName [WHERE expression] [LIMIT term]

Deletes rows form a table. If TOP or LIMIT is specified, at most the specified
number of rows are deleted (no limit if null or smaller than zero).

Example:

DELETE FROM TEST WHERE ID=2

BACKUP

BACKUP TO fileNameString

Backs up the database files to a .zip file. Objects are not locked, but the backup is
transactionally consistent because the transaction log is also copied. Admin rights
are required to execute this command.

Example:

BACKUP TO 'backup.zip'

CALL

CALL expression

Calculates a simple expression. This statement returns a result set with one row,
except if the called function returns a result set itself. If the called function
returns an array, then each element in this array is returned as a column.

Example:

CALL 15*25

156 of 347

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE sqlString

Dynamically prepares and executes the SQL command specified as a string. Query
commands may not be used.

Example:

EXECUTE IMMEDIATE 'ALTER TABLE TEST DROP CONSTRAINT ' ||
 QUOTE_IDENT((SELECT CONSTRAINT_NAME
 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS
 WHERE TABLE_SCHEMA = 'PUBLIC' AND TABLE_NAME = 'TEST'
 AND CONSTRAINT_TYPE = 'UNIQUE'));

EXPLAIN

EXPLAIN { [PLAN FOR] | ANALYZE }
{ query | insert | update | delete | mergeInto | mergeUsing }

Shows the execution plan for a statement. When using EXPLAIN ANALYZE, the
statement is actually executed, and the query plan will include the actual row scan
count for each table.

Example:

EXPLAIN SELECT * FROM TEST WHERE ID=1

MERGE INTO

MERGE INTO tableName [(columnName [,...])]
[KEY (columnName [,...])]
{ insertValues | query }

Updates existing rows, and insert rows that don't exist. If no key column is
specified, the primary key columns are used to find the row. If more than one row
per new row is affected, an exception is thrown.

Example:

MERGE INTO TEST KEY(ID) VALUES(2, 'World')

157 of 347

MERGE USING

MERGE INTO targetTableName [[AS] targetAlias]
USING { (query) | sourceTableName }[[AS] sourceAlias]
ON expression
mergeWhenClause [,...]

Updates or deletes existing rows, and insert rows that don't exist.

The ON clause specifies the matching column expression. Different rows from a
source table may not match with the same target row, but one source row may
be matched with multiple target rows.

If statement doesn't need a source table a DUAL table can be substituted.

Example:

MERGE INTO TARGET_TABLE AS T USING SOURCE_TABLE AS S
 ON T.ID = S.ID
 WHEN MATCHED AND T.COL2 <> 'FINAL' THEN
 UPDATE SET T.COL1 = S.COL1
 WHEN MATCHED AND T.COL2 = 'FINAL' THEN
 DELETE
 WHEN NOT MATCHED THEN
 INSERT (ID, COL1, COL2) VALUES(S.ID, S.COL1, S.COL2)
MERGE INTO TARGET_TABLE AS T USING (SELECT * FROM SOURCE_TABLE) AS
S
 ON T.ID = S.ID
 WHEN MATCHED AND T.COL2 <> 'FINAL' THEN
 UPDATE SET T.COL1 = S.COL1
 WHEN MATCHED AND T.COL2 = 'FINAL' THEN
 DELETE
 WHEN NOT MATCHED THEN
 INSERT VALUES (S.ID, S.COL1, S.COL2)
MERGE INTO TARGET_TABLE USING DUAL ON ID = 1
 WHEN NOT MATCHED THEN INSERT VALUES (1, 'Test')
 WHEN MATCHED THEN UPDATE SET NAME = 'Test'

RUNSCRIPT

RUNSCRIPT FROM fileNameString scriptCompressionEncryption
[CHARSET charsetString]

Runs a SQL script from a file. The script is a text file containing SQL statements;
each statement must end with ';'. This command can be used to restore a

158 of 347

database from a backup. The password must be in single quotes; it is case
sensitive and can contain spaces.

Instead of a file name, a URL may be used. To read a stream from the classpath,
use the prefix 'classpath:'. See the Pluggable File System section on the Advanced
page.

The compression algorithm must match the one used when creating the script.
Instead of a file, a URL may be used.

Admin rights are required to execute this command.

Example:

RUNSCRIPT FROM 'backup.sql'
RUNSCRIPT FROM 'classpath:/com/acme/test.sql'

SCRIPT

SCRIPT { [NODATA] | [SIMPLE] [COLUMNS] }
[NOPASSWORDS] [NOSETTINGS]
[DROP] [BLOCKSIZE blockSizeInt]
[TO fileNameString scriptCompressionEncryption
[CHARSET charsetString]]
[TABLE tableName [, ...]]
[SCHEMA schemaName [, ...]]

Creates a SQL script from the database.

NODATA will not emit INSERT statements. SIMPLE does not use multi-row insert
statements. COLUMNS includes column name lists into insert statements. If the
DROP option is specified, drop statements are created for tables, views, and
sequences. If the block size is set, CLOB and BLOB values larger than this size are
split into separate blocks. BLOCKSIZE is used when writing out LOB data, and
specifies the point at the values transition from being inserted as inline values, to
be inserted using out-of-line commands. NOSETTINGS turns off dumping the
database settings (the SET XXX commands)

If no 'TO fileName' clause is specified, the script is returned as a result set. This
command can be used to create a backup of the database. For long term storage,
it is more portable than copying the database files.

If a 'TO fileName' clause is specified, then the whole script (including insert
statements) is written to this file, and a result set without the insert statements is
returned.

159 of 347

The password must be in single quotes; it is case sensitive and can contain
spaces.

This command locks objects while it is running. Admin rights are required to
execute this command.

When using the TABLE or SCHEMA option, only the selected table(s) / schema(s)
are included.

Example:

SCRIPT NODATA

SHOW

SHOW { SCHEMAS | TABLES [FROM schemaName] |
COLUMNS FROM tableName [FROM schemaName] }

Lists the schemas, tables, or the columns of a table.

Example:

SHOW TABLES

Explicit table

TABLE [schemaName.]tableName
[ORDER BY order [,...]]
[OFFSET expression { ROW | ROWS }]
[FETCH { FIRST | NEXT } [expression [PERCENT]] { ROW | ROWS }
{ ONLY | WITH TIES }]

Selects data from a table.

This command is an equivalent to SELECT * FROM tableName. See SELECT
command for description of ORDER BY, OFFSET, and FETCH.

Example:

TABLE TEST;
TABLE TEST ORDER BY ID FETCH FIRST ROW ONLY;

160 of 347

Table value

VALUES rowValueExpression [,...]
[ORDER BY order [,...]]
[OFFSET expression { ROW | ROWS }]
[FETCH { FIRST | NEXT } [expression [PERCENT]] { ROW | ROWS }
{ ONLY | WITH TIES }]

A list of rows that can be used like a table. See See SELECT command for
description of ORDER BY, OFFSET, and FETCH. The column list of the resulting
table is C1, C2, and so on.

Example:

VALUES (1, 'Hello'), (2, 'World');

WITH

WITH [RECURSIVE] { name [(columnName [,...])] AS (query) [,...] }
{ query | insert | update | delete | mergeInto | mergeUsing | createTable }

Can be used to create a recursive or non-recursive query (common table
expression). For recursive queries the first select has to be a UNION. One or more
common table entries can be referred to by name. Column name declarations are
now optional - the column names will be inferred from the named select queries.
The final action in a WITH statement can be a select, insert, update, merge,
delete or create table.

Example:

WITH RECURSIVE cte(n) AS (
 SELECT 1
 UNION ALL
 SELECT n + 1
 FROM cte
 WHERE n < 100
)
SELECT sum(n) FROM cte;

Example 2:
WITH cte1 AS (
 SELECT 1 AS FIRST_COLUMN
), cte2 AS (
 SELECT FIRST_COLUMN+1 AS FIRST_COLUMN FROM cte1

161 of 347

)
SELECT sum(FIRST_COLUMN) FROM cte2;

Commands (Data Definition)

ALTER INDEX RENAME

ALTER INDEX [IF EXISTS] indexName RENAME TO newIndexName

Renames an index. This command commits an open transaction in this
connection.

Example:

ALTER INDEX IDXNAME RENAME TO IDX_TEST_NAME

ALTER SCHEMA RENAME

ALTER SCHEMA [IF EXISTS] schemaName RENAME TO newSchemaName

Renames a schema. This command commits an open transaction in this
connection.

Example:

ALTER SCHEMA TEST RENAME TO PRODUCTION

ALTER SEQUENCE

ALTER SEQUENCE [IF EXISTS] sequenceName sequenceOptions

Changes the parameters of a sequence. This command does not commit the
current transaction; however the new value is used by other transactions
immediately, and rolling back this command has no effect.

Example:

ALTER SEQUENCE SEQ_ID RESTART WITH 1000

ALTER TABLE ADD

ALTER TABLE [IF EXISTS] tableName ADD [COLUMN]

162 of 347

{ [IF NOT EXISTS] columnName columnDefinition
| ({ columnName columnDefinition | constraint } [,...]) }
[{ { BEFORE | AFTER } columnName } | FIRST]

Adds a new column to a table. This command commits an open transaction in this
connection.

Example:

ALTER TABLE TEST ADD CREATEDATE TIMESTAMP

ALTER TABLE ADD CONSTRAINT

ALTER TABLE [IF EXISTS] tableName ADD constraint [CHECK | NOCHECK]

Adds a constraint to a table. If NOCHECK is specified, existing rows are not
checked for consistency (the default is to check consistency for existing rows).
The required indexes are automatically created if they don't exist yet. It is not
possible to disable checking for unique constraints. This command commits an
open transaction in this connection.

Example:

ALTER TABLE TEST ADD CONSTRAINT NAME_UNIQUE UNIQUE(NAME)

ALTER TABLE RENAME CONSTRAINT

ALTER TABLE [IF EXISTS] tableName RENAME oldConstraintName
TO newConstraintName

Renames a constraint. This command commits an open transaction in this
connection.

Example:

ALTER TABLE TEST RENAME CONSTRAINT FOO TO BAR

ALTER TABLE ALTER COLUMN

ALTER TABLE [IF EXISTS] tableName
ALTER COLUMN [IF EXISTS] columnName
{ { columnDefinition }
| { RENAME TO name }
| { RESTART WITH long }

163 of 347

| { SELECTIVITY int }
| { SET DEFAULT expression }
| { DROP DEFAULT }
| { SET ON UPDATE expression }
| { DROP ON UPDATE }
| { SET NOT NULL }
| { DROP NOT NULL } | { SET NULL }
| { SET DATA TYPE dataType }
| { SET { VISIBLE | INVISIBLE } } }

Changes the data type of a column, rename a column, change the identity value,
or change the selectivity.

Changing the data type fails if the data can not be converted.

RESTART changes the next value of an auto increment column. The column must
already be an auto increment column. For RESTART, the same transactional rules
as for ALTER SEQUENCE apply.

SELECTIVITY sets the selectivity (1-100) for a column. Setting the selectivity to 0
means the default value. Selectivity is used by the cost based optimizer to
calculate the estimated cost of an index. Selectivity 100 means values are unique,
10 means every distinct value appears 10 times on average.

SET DEFAULT changes the default value of a column.

DROP DEFAULT removes the default value of a column.

SET ON UPDATE changes the value that is set on update if value for this column
is not specified in update statement.

DROP ON UPDATE removes the value that is set on update of a column.

SET NOT NULL sets a column to not allow NULL. Rows may not contains NULL in
this column.

DROP NOT NULL and SET NULL set a column to allow NULL. The row may not be
part of a primary key.

SET DATA TYPE changes the data type of a column.

SET INVISIBLE makes the column hidden, i.e. it will not appear in SELECT *
results. SET VISIBLE has the reverse effect.

This command commits an open transaction in this connection.

Example:

164 of 347

ALTER TABLE TEST ALTER COLUMN NAME CLOB;
ALTER TABLE TEST ALTER COLUMN NAME RENAME TO TEXT;
ALTER TABLE TEST ALTER COLUMN ID RESTART WITH 10000;
ALTER TABLE TEST ALTER COLUMN NAME SELECTIVITY 100;
ALTER TABLE TEST ALTER COLUMN NAME SET DEFAULT '';
ALTER TABLE TEST ALTER COLUMN NAME SET NOT NULL;
ALTER TABLE TEST ALTER COLUMN NAME SET NULL;
ALTER TABLE TEST ALTER COLUMN NAME SET VISIBLE;
ALTER TABLE TEST ALTER COLUMN NAME SET INVISIBLE;

ALTER TABLE DROP COLUMN

ALTER TABLE [IF EXISTS] tableName DROP COLUMN [IF EXISTS]
columnName [,...] | (columnName [,...])

Removes column(s) from a table. This command commits an open transaction in
this connection.

Example:

ALTER TABLE TEST DROP COLUMN NAME
ALTER TABLE TEST DROP COLUMN NAME1, NAME2
ALTER TABLE TEST DROP COLUMN (NAME1, NAME2)

ALTER TABLE DROP CONSTRAINT

ALTER TABLE [IF EXISTS] tableName DROP
{ CONSTRAINT [IF EXISTS] constraintName | PRIMARY KEY }

Removes a constraint or a primary key from a table. This command commits an
open transaction in this connection.

Example:

ALTER TABLE TEST DROP CONSTRAINT UNIQUE_NAME

ALTER TABLE SET

ALTER TABLE [IF EXISTS] tableName SET REFERENTIAL_INTEGRITY
{ FALSE | TRUE } [CHECK | NOCHECK]

Disables or enables referential integrity checking for a table. This command can
be used inside a transaction. Enabling referential integrity does not check existing

165 of 347

data, except if CHECK is specified. Use SET REFERENTIAL_INTEGRITY to disable
it for all tables; the global flag and the flag for each table are independent.

This command commits an open transaction in this connection.

Example:

ALTER TABLE TEST SET REFERENTIAL_INTEGRITY FALSE

ALTER TABLE RENAME

ALTER TABLE [IF EXISTS] tableName RENAME TO newName

Renames a table. This command commits an open transaction in this connection.

Example:

ALTER TABLE TEST RENAME TO MY_DATA

ALTER USER ADMIN

ALTER USER userName ADMIN { TRUE | FALSE }

Switches the admin flag of a user on or off.

Only unquoted or uppercase user names are allowed. Admin rights are required to
execute this command. This command commits an open transaction in this
connection.

Example:

ALTER USER TOM ADMIN TRUE

ALTER USER RENAME

ALTER USER userName RENAME TO newUserName

Renames a user. After renaming a user, the password becomes invalid and needs
to be changed as well.

Only unquoted or uppercase user names are allowed. Admin rights are required to
execute this command. This command commits an open transaction in this
connection.

Example:
166 of 347

ALTER USER TOM RENAME TO THOMAS

ALTER USER SET PASSWORD

ALTER USER userName SET { PASSWORD string | SALT bytes HASH bytes }

Changes the password of a user. Only unquoted or uppercase user names are
allowed. The password must be enclosed in single quotes. It is case sensitive and
can contain spaces. The salt and hash values are hex strings.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

ALTER USER SA SET PASSWORD 'rioyxlgt'

ALTER VIEW RECOMPILE

ALTER VIEW [IF EXISTS] viewName RECOMPILE

Recompiles a view after the underlying tables have been changed or created. This
command is used for views created using CREATE FORCE VIEW. This command
commits an open transaction in this connection.

Example:

ALTER VIEW ADDRESS_VIEW RECOMPILE

ALTER VIEW RENAME

ALTER VIEW [IF EXISTS] viewName RENAME TO newName

Renames a view. This command commits an open transaction in this connection.

Example:

ALTER VIEW TEST RENAME TO MY_VIEW

ANALYZE

ANALYZE [TABLE tableName] [SAMPLE_SIZE rowCountInt]

167 of 347

Updates the selectivity statistics of tables. If no table name is given, all tables are
analyzed. The selectivity is used by the cost based optimizer to select the best
index for a given query. If no sample size is set, up to 10000 rows per table are
read. The value 0 means all rows are read. The selectivity can be set manually
using ALTER TABLE ALTER COLUMN SELECTIVITY. Manual values are overwritten
by this statement. The selectivity is available in the
INFORMATION_SCHEMA.COLUMNS table.

This command commits an open transaction in this connection.

Example:

ANALYZE SAMPLE_SIZE 1000

COMMENT

COMMENT ON
{ { COLUMN [schemaName.] tableName.columnName }
| { { TABLE | VIEW | CONSTANT | CONSTRAINT | ALIAS | INDEX | ROLE
| SCHEMA | SEQUENCE | TRIGGER | USER | DOMAIN } [schemaName.]
objectName } }
IS expression

Sets the comment of a database object. Use NULL to remove the comment.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

COMMENT ON TABLE TEST IS 'Table used for testing'

CREATE AGGREGATE

CREATE AGGREGATE [IF NOT EXISTS] newAggregateName FOR className

Creates a new user-defined aggregate function. The method name must be the
full qualified class name. The class must implement the interface
org.h2.api.Aggregate or org.h2.api.AggregateFunction.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

168 of 347

CREATE AGGREGATE SIMPLE_MEDIAN FOR "com.acme.db.Median"

CREATE ALIAS

CREATE ALIAS [IF NOT EXISTS] newFunctionAliasName [DETERMINISTIC]
{ FOR classAndMethodName | AS sourceCodeString }

Creates a new function alias. If this is a ResultSet returning function, by default
the return value is cached in a local temporary file.

DETERMINISTIC - Deterministic functions must always return the same value for
the same parameters.

The method name must be the full qualified class and method name, and may
optionally include the parameter classes as in
java.lang.Integer.parseInt(java.lang.String, int). The class and the method must
both be public, and the method must be static. The class must be available in the
classpath of the database engine (when using the server mode, it must be in the
classpath of the server).

When defining a function alias with source code, the Sun javac is compiler is used
if the file tools.jar is in the classpath. If not, javac is run as a separate process.
Only the source code is stored in the database; the class is compiled each time
the database is re-opened. Source code is usually passed as dollar quoted text to
avoid escaping problems. If import statements are used, then the tag @CODE
must be added before the method.

If the method throws an SQLException, it is directly re-thrown to the calling
application; all other exceptions are first converted to a SQLException.

If the first parameter of the Java function is a java.sql.Connection, then a
connection to the database is provided. This connection must not be closed. If the
class contains multiple methods with the given name but different parameter
count, all methods are mapped.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

If you have the Groovy jar in your classpath, it is also possible to write methods
using Groovy.

Example:

CREATE ALIAS MY_SQRT FOR "java.lang.Math.sqrt";
CREATE ALIAS GET_SYSTEM_PROPERTY FOR "java.lang.System.getProperty";
CALL GET_SYSTEM_PROPERTY('java.class.path');

169 of 347

CALL GET_SYSTEM_PROPERTY('com.acme.test', 'true');
CREATE ALIAS REVERSE AS $$ String reverse(String s) { return new
StringBuilder(s).reverse().toString(); } $$;
CALL REVERSE('Test');
CREATE ALIAS tr AS $$@groovy.transform.CompileStatic
 static String tr(String str, String sourceSet, String replacementSet){
 return str.tr(sourceSet, replacementSet);
 }
$$

CREATE CONSTANT

CREATE CONSTANT [IF NOT EXISTS] newConstantName VALUE expression

Creates a new constant. This command commits an open transaction in this
connection.

Example:

CREATE CONSTANT ONE VALUE 1

CREATE DOMAIN

CREATE DOMAIN [IF NOT EXISTS] newDomainName AS dataType
[DEFAULT expression] [[NOT] NULL] [SELECTIVITY selectivityInt]
[CHECK condition]

Creates a new data type (domain). The check condition must evaluate to true or
to NULL (to prevent NULL, use NOT NULL). In the condition, the term VALUE
refers to the value being tested.

Domains are usable within the whole database. They can not be created in a
specific schema.

This command commits an open transaction in this connection.

Example:

CREATE DOMAIN EMAIL AS VARCHAR(255) CHECK (POSITION('@', VALUE) > 1)

CREATE INDEX

CREATE
{ [UNIQUE] [HASH | SPATIAL] INDEX [[IF NOT EXISTS] newIndexName]

170 of 347

| PRIMARY KEY [HASH] }
ON tableName (indexColumn [,...])

Creates a new index. This command commits an open transaction in this
connection.

Hash indexes are meant for in-memory databases and memory tables (CREATE
MEMORY TABLE) when PageStore engine is used. For other tables, or if the index
contains multiple columns, the HASH keyword is ignored. Hash indexes can only
test for equality, do not support range queries (similar to a hash table), use more
memory, but can perform lookups faster. Non-unique keys are supported.

Spatial indexes are supported only on Geometry columns.

Example:

CREATE INDEX IDXNAME ON TEST(NAME)

CREATE LINKED TABLE

CREATE [FORCE] [[GLOBAL | LOCAL] TEMPORARY]
LINKED TABLE [IF NOT EXISTS]
name (driverString, urlString, userString, passwordString,
[originalSchemaString,] originalTableString) [EMIT UPDATES | READONLY]

Creates a table link to an external table. The driver name may be empty if the
driver is already loaded. If the schema name is not set, only one table with that
name may exist in the target database.

FORCE - Create the LINKED TABLE even if the remote database/table does not
exist.

EMIT UPDATES - Usually, for update statements, the old rows are deleted first
and then the new rows are inserted. It is possible to emit update statements
(except on rollback), however in this case multi-row unique key updates may not
always work. Linked tables to the same database share one connection.

READONLY - is set, the remote table may not be updated. This is enforced by H2.

If the connection to the source database is lost, the connection is re-opened (this
is a workaround for MySQL that disconnects after 8 hours of inactivity by default).

If a query is used instead of the original table name, the table is read only.
Queries must be enclosed in parenthesis: (SELECT * FROM ORDERS).

171 of 347

To use JNDI to get the connection, the driver class must be a
javax.naming.Context (for example javax.naming.InitialContext), and the URL
must be the resource name (for example java:comp/env/jdbc/Test).

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

CREATE LINKED TABLE LINK('org.h2.Driver', 'jdbc:h2:./test2',
 'sa', 'sa', 'TEST');
CREATE LINKED TABLE LINK('', 'jdbc:h2:./test2', 'sa', 'sa',
 '(SELECT * FROM TEST WHERE ID>0)');
CREATE LINKED TABLE LINK('javax.naming.InitialContext',
 'java:comp/env/jdbc/Test', NULL, NULL,
 '(SELECT * FROM TEST WHERE ID>0)');

CREATE ROLE

CREATE ROLE [IF NOT EXISTS] newRoleName

Creates a new role. This command commits an open transaction in this
connection.

Example:

CREATE ROLE READONLY

CREATE SCHEMA

CREATE SCHEMA [IF NOT EXISTS] name
[AUTHORIZATION ownerUserName]
[WITH tableEngineParamName [,...]]

Creates a new schema. If no owner is specified, the current user is used. The user
that executes the command must have admin rights, as well as the owner.
Specifying the owner currently has no effect. Optional table engine parameters
are used when CREATE TABLE command is run on this schema without having its
engine params set.

This command commits an open transaction in this connection.

Example:

CREATE SCHEMA TEST_SCHEMA AUTHORIZATION SA

172 of 347

CREATE SEQUENCE

CREATE SEQUENCE [IF NOT EXISTS] newSequenceName [sequenceOptions]

Creates a new sequence. The data type of a sequence is BIGINT. Used values are
never re-used, even when the transaction is rolled back.

This command commits an open transaction in this connection.

Example:

CREATE SEQUENCE SEQ_ID

CREATE TABLE

CREATE [CACHED | MEMORY] [TEMP | [GLOBAL | LOCAL] TEMPORARY]
TABLE [IF NOT EXISTS] name
[({ columnName [columnDefinition] | constraint } [,...])]
[ENGINE tableEngineName]
[WITH tableEngineParamName [,...]]
[NOT PERSISTENT] [TRANSACTIONAL]
[AS query [WITH [NO] DATA]]

Creates a new table.

Cached tables (the default for regular tables) are persistent, and the number of
rows is not limited by the main memory. Memory tables (the default for
temporary tables) are persistent, but the index data is kept in main memory, that
means memory tables should not get too large.

Temporary tables are deleted when closing or opening a database. Temporary
tables can be global (accessible by all connections) or local (only accessible by the
current connection). The default for temporary tables is global. Indexes of
temporary tables are kept fully in main memory, unless the temporary table is
created using CREATE CACHED TABLE.

The ENGINE option is only required when custom table implementations are used.
The table engine class must implement the interface org.h2.api.TableEngine. Any
table engine parameters are passed down in the tableEngineParams field of the
CreateTableData object.

Either ENGINE, or WITH (table engine params), or both may be specified. If
ENGINE is not specified in CREATE TABLE, then the engine specified by
DEFAULT_TABLE_ENGINE option of database params is used.

173 of 347

Tables with the NOT PERSISTENT modifier are kept fully in memory, and all rows
are lost when the database is closed.

The column definitions are optional if a query is specified. In that case the column
list of the query is used. If the query is specified its results are inserted into
created table unless WITH NO DATA is specified.

This command commits an open transaction, except when using TRANSACTIONAL
(only supported for temporary tables).

Example:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255))

CREATE TRIGGER

CREATE TRIGGER [IF NOT EXISTS] newTriggerName
{ BEFORE | AFTER | INSTEAD OF }
{ INSERT | UPDATE | DELETE | SELECT | ROLLBACK }
[,...] ON tableName [FOR EACH ROW]
[QUEUE int] [NOWAIT]
{ CALL triggeredClassName | AS sourceCodeString }

Creates a new trigger. The trigger class must be public and implement
org.h2.api.Trigger. Inner classes are not supported. The class must be available in
the classpath of the database engine (when using the server mode, it must be in
the classpath of the server).

The sourceCodeString must define a single method with no parameters that
returns org.h2.api.Trigger. See CREATE ALIAS for requirements regarding the
compilation. Alternatively, javax.script.ScriptEngineManager can be used to create
an instance of org.h2.api.Trigger. Currently javascript (included in every JRE) and
ruby (with JRuby) are supported. In that case the source must begin respectively
with //javascript or #ruby.

BEFORE triggers are called after data conversion is made, default values are set,
null and length constraint checks have been made; but before other constraints
have been checked. If there are multiple triggers, the order in which they are
called is undefined.

ROLLBACK can be specified in combination with INSERT, UPDATE, and DELETE.
Only row based AFTER trigger can be called on ROLLBACK. Exceptions that occur
within such triggers are ignored. As the operations that occur within a trigger are
part of the transaction, ROLLBACK triggers are only required if an operation
communicates outside of the database.

174 of 347

INSTEAD OF triggers are implicitly row based and behave like BEFORE triggers.
Only the first such trigger is called. Such triggers on views are supported. They
can be used to make views updatable.

A BEFORE SELECT trigger is fired just before the database engine tries to read
from the table. The trigger can be used to update a table on demand. The trigger
is called with both 'old' and 'new' set to null.

The MERGE statement will call both INSERT and UPDATE triggers. Not supported
are SELECT triggers with the option FOR EACH ROW, and AFTER SELECT triggers.

Committing or rolling back a transaction within a trigger is not allowed, except for
SELECT triggers.

By default a trigger is called once for each statement, without the old and new
rows. FOR EACH ROW triggers are called once for each inserted, updated, or
deleted row.

QUEUE is implemented for syntax compatibility with HSQL and has no effect.

The trigger need to be created in the same schema as the table. The schema
name does not need to be specified when creating the trigger.

This command commits an open transaction in this connection.

Example:

CREATE TRIGGER TRIG_INS BEFORE INSERT ON TEST FOR EACH ROW CALL
"MyTrigger";
CREATE TRIGGER TRIG_SRC BEFORE INSERT ON TEST AS $$org.h2.api.Trigger
create() { return new MyTrigger("constructorParam"); } $$;
CREATE TRIGGER TRIG_JS BEFORE INSERT ON TEST AS $$//javascript\nreturn
new Packages.MyTrigger("constructorParam"); $$;
CREATE TRIGGER TRIG_RUBY BEFORE INSERT ON TEST AS $
$#ruby\nJava::MyPackage::MyTrigger.new("constructorParam") $$;

CREATE USER

CREATE USER [IF NOT EXISTS] newUserName
{ PASSWORD string | SALT bytes HASH bytes } [ADMIN]

Creates a new user. For compatibility, only unquoted or uppercase user names
are allowed. The password must be in single quotes. It is case sensitive and can
contain spaces. The salt and hash values are hex strings.

175 of 347

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

CREATE USER GUEST PASSWORD 'abc'

CREATE VIEW

CREATE [OR REPLACE] [FORCE] VIEW [IF NOT EXISTS] newViewName
[(columnName [,...])] AS query

Creates a new view. If the force option is used, then the view is created even if
the underlying table(s) don't exist.

If the OR REPLACE clause is used an existing view will be replaced, and any
dependent views will not need to be recreated. If dependent views will become
invalid as a result of the change an error will be generated, but this error can be
ignored if the FORCE clause is also used.

Views are not updatable except when using 'instead of' triggers.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

CREATE VIEW TEST_VIEW AS SELECT * FROM TEST WHERE ID < 100

DROP AGGREGATE

DROP AGGREGATE [IF EXISTS] aggregateName

Drops an existing user-defined aggregate function.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

DROP AGGREGATE SIMPLE_MEDIAN

176 of 347

DROP ALIAS

DROP ALIAS [IF EXISTS] existingFunctionAliasName

Drops an existing function alias.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

DROP ALIAS MY_SQRT

DROP ALL OBJECTS

DROP ALL OBJECTS [DELETE FILES]

Drops all existing views, tables, sequences, schemas, function aliases, roles, user-
defined aggregate functions, domains, and users (except the current user). If
DELETE FILES is specified, the database files will be removed when the last user
disconnects from the database. Warning: this command can not be rolled back.

Admin rights are required to execute this command.

Example:

DROP ALL OBJECTS

DROP CONSTANT

DROP CONSTANT [IF EXISTS] constantName

Drops a constant. This command commits an open transaction in this connection.

Example:

DROP CONSTANT ONE

DROP DOMAIN

DROP DOMAIN [IF EXISTS] domainName [RESTRICT | CASCADE]

Drops a data type (domain). The command will fail if it is referenced by a column
(the default). Column descriptors are replaced with original definition of specified

177 of 347

domain if the CASCADE clause is used. This command commits an open
transaction in this connection.

Example:

DROP DOMAIN EMAIL

DROP INDEX

DROP INDEX [IF EXISTS] indexName

Drops an index. This command commits an open transaction in this connection.

Example:

DROP INDEX IF EXISTS IDXNAME

DROP ROLE

DROP ROLE [IF EXISTS] roleName

Drops a role. This command commits an open transaction in this connection.

Example:

DROP ROLE READONLY

DROP SCHEMA

DROP SCHEMA [IF EXISTS] schemaName [RESTRICT | CASCADE]

Drops a schema. The command will fail if objects in this schema exist and the
RESTRICT clause is used (the default). All objects in this schema are dropped as
well if the CASCADE clause is used. This command commits an open transaction
in this connection.

Example:

DROP SCHEMA TEST_SCHEMA

DROP SEQUENCE

DROP SEQUENCE [IF EXISTS] sequenceName

178 of 347

Drops a sequence. This command commits an open transaction in this connection.

Example:

DROP SEQUENCE SEQ_ID

DROP TABLE

DROP TABLE [IF EXISTS] tableName [,...] [RESTRICT | CASCADE]

Drops an existing table, or a list of tables. The command will fail if dependent
objects exist and the RESTRICT clause is used (the default). All dependent views
and constraints are dropped as well if the CASCADE clause is used. This command
commits an open transaction in this connection.

Example:

DROP TABLE TEST

DROP TRIGGER

DROP TRIGGER [IF EXISTS] triggerName

Drops an existing trigger. This command commits an open transaction in this
connection.

Example:

DROP TRIGGER TRIG_INS

DROP USER

DROP USER [IF EXISTS] userName

Drops a user. The current user cannot be dropped. For compatibility, only
unquoted or uppercase user names are allowed.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

DROP USER TOM

179 of 347

DROP VIEW

DROP VIEW [IF EXISTS] viewName [RESTRICT | CASCADE]

Drops an existing view. All dependent views are dropped as well if the CASCADE
clause is used (the default). The command will fail if dependent views exist and
the RESTRICT clause is used. This command commits an open transaction in this
connection.

Example:

DROP VIEW TEST_VIEW

TRUNCATE TABLE

TRUNCATE TABLE tableName [[CONTINUE | RESTART] IDENTITY]

Removes all rows from a table. Unlike DELETE FROM without where clause, this
command can not be rolled back. This command is faster than DELETE without
where clause. Only regular data tables without foreign key constraints can be
truncated (except if referential integrity is disabled for this database or for this
table). Linked tables can't be truncated. If RESTART IDENTITY is specified next
values for auto-incremented columns are restarted.

This command commits an open transaction in this connection.

Example:

TRUNCATE TABLE TEST

Commands (Other)

CHECKPOINT

CHECKPOINT

Flushes the data to disk.

Admin rights are required to execute this command.

Example:

CHECKPOINT

180 of 347

CHECKPOINT SYNC

CHECKPOINT SYNC

Flushes the data to disk and forces all system buffers be written to the underlying
device.

Admin rights are required to execute this command.

Example:

CHECKPOINT SYNC

COMMIT

COMMIT [WORK]

Commits a transaction.

Example:

COMMIT

COMMIT TRANSACTION

COMMIT TRANSACTION transactionName

Sets the resolution of an in-doubt transaction to 'commit'.

Admin rights are required to execute this command. This command is part of the
2-phase-commit protocol.

Example:

COMMIT TRANSACTION XID_TEST

GRANT RIGHT

GRANT { SELECT | INSERT | UPDATE | DELETE | ALL } [,...] ON
{ { SCHEMA schemaName } | { tableName [,...] } }
TO { PUBLIC | userName | roleName }

Grants rights for a table to a user or role.

181 of 347

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

GRANT SELECT ON TEST TO READONLY

GRANT ALTER ANY SCHEMA

GRANT ALTER ANY SCHEMA TO userName

Grant schema altering rights to a user.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

GRANT ALTER ANY SCHEMA TO Bob

GRANT ROLE

GRANT roleName TO { PUBLIC | userName | roleName }

Grants a role to a user or role.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

GRANT READONLY TO PUBLIC

HELP

HELP [anything [...]]

Displays the help pages of SQL commands or keywords.

Example:

HELP SELECT

182 of 347

PREPARE COMMIT

PREPARE COMMIT newTransactionName

Prepares committing a transaction. This command is part of the 2-phase-commit
protocol.

Example:

PREPARE COMMIT XID_TEST

REVOKE RIGHT

REVOKE { SELECT | INSERT | UPDATE | DELETE | ALL } [,...] ON
{ { SCHEMA schemaName } | { tableName [,...] } }
FROM { PUBLIC | userName | roleName }

Removes rights for a table from a user or role.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

REVOKE SELECT ON TEST FROM READONLY

REVOKE ROLE

REVOKE roleName FROM { PUBLIC | userName | roleName }

Removes a role from a user or role.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

REVOKE READONLY FROM TOM

ROLLBACK

ROLLBACK [TO SAVEPOINT savepointName]

183 of 347

Rolls back a transaction. If a savepoint name is used, the transaction is only rolled
back to the specified savepoint.

Example:

ROLLBACK

ROLLBACK TRANSACTION

ROLLBACK TRANSACTION transactionName

Sets the resolution of an in-doubt transaction to 'rollback'.

Admin rights are required to execute this command. This command is part of the
2-phase-commit protocol.

Example:

ROLLBACK TRANSACTION XID_TEST

SAVEPOINT

SAVEPOINT savepointName

Create a new savepoint. See also ROLLBACK. Savepoints are only valid until the
transaction is committed or rolled back.

Example:

SAVEPOINT HALF_DONE

SET @

SET @variableName [=] expression

Updates a user-defined variable. Variables are not persisted and session scoped,
that means only visible from within the session in which they are defined. This
command does not commit a transaction, and rollback does not affect it.

Example:

SET @TOTAL=0

184 of 347

SET ALLOW_LITERALS

SET ALLOW_LITERALS { NONE | ALL | NUMBERS }

This setting can help solve the SQL injection problem. By default, text and
number literals are allowed in SQL statements. However, this enables SQL
injection if the application dynamically builds SQL statements. SQL injection is not
possible if user data is set using parameters ('?').

NONE means literals of any kind are not allowed, only parameters and constants
are allowed. NUMBERS mean only numerical and boolean literals are allowed. ALL
means all literals are allowed (default).

See also CREATE CONSTANT.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. This setting can be appended to the database URL:
jdbc:h2:./test;ALLOW_LITERALS=NONE

Example:

SET ALLOW_LITERALS NONE

SET AUTOCOMMIT

SET AUTOCOMMIT { TRUE | ON | FALSE | OFF }

Switches auto commit on or off. This setting can be appended to the database
URL: jdbc:h2:./test;AUTOCOMMIT=OFF - however this will not work as expected
when using a connection pool (the connection pool manager will re-enable
autocommit when returning the connection to the pool, so autocommit will only
be disabled the first time the connection is used.

Example:

SET AUTOCOMMIT OFF

SET CACHE_SIZE

SET CACHE_SIZE int

Sets the size of the cache in KB (each KB being 1024 bytes) for the current
database. The default is 65536 per available GB of RAM, i.e. 64 MB per GB. The

185 of 347

value is rounded to the next higher power of two. Depending on the virtual
machine, the actual memory required may be higher.

This setting is persistent and affects all connections as there is only one cache per
database. Using a very small value (specially 0) will reduce performance a lot.
This setting only affects the database engine (the server in a client/server
environment; in embedded mode, the database engine is in the same process as
the application). It has no effect for in-memory databases.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. This setting can be appended to the database URL:
jdbc:h2:./test;CACHE_SIZE=8192

Example:

SET CACHE_SIZE 8192

SET CLUSTER

SET CLUSTER serverListString

This command should not be used directly by an application, the statement is
executed automatically by the system. The behavior may change in future
releases. Sets the cluster server list. An empty string switches off the cluster
mode. Switching on the cluster mode requires admin rights, but any user can
switch it off (this is automatically done when the client detects the other server is
not responding).

This command is effective immediately, but does not commit an open transaction.

Example:

SET CLUSTER ''

SET BINARY_COLLATION

SET BINARY_COLLATION { UNSIGNED | SIGNED }

Sets the collation used for comparing BINARY columns, the default is SIGNED for
version 1.3 and older, and UNSIGNED for version 1.4 and newer. This command
can only be executed if there are no tables defined.

Admin rights are required to execute this command. This command commits an
open transaction in this connection. This setting is persistent.

186 of 347

Example:

SET BINARY_COLLATION SIGNED

SET UUID_COLLATION

SET UUID_COLLATION { UNSIGNED | SIGNED }

Sets the collation used for comparing UUID columns, the default is SIGNED. This
command can only be executed if there are no tables defined.

SIGNED means signed comparison between first 64 bits of compared values
treated as long values and if they are equal a signed comparison of the last 64
bits of compared values treated as long values. See also Java UUID.compareTo().
UNSIGNED means RFC 4122 compatible unsigned comparison.

Admin rights are required to execute this command. This command commits an
open transaction in this connection. This setting is persistent.

Example:

SET UUID_COLLATION UNSIGNED

SET BUILTIN_ALIAS_OVERRIDE

SET BUILTIN_ALIAS_OVERRIDE { TRUE | FALSE }

Allows the overriding of the builtin system date/time functions for unit testing
purposes.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

SET BUILTIN_ALIAS_OVERRIDE TRUE

SET CATALOG

SET CATALOG { catalogString | catalogName }

This command has no effect if the specified name matches the name of the
database, otherwise it throws an exception.

187 of 347

This command does not commit a transaction.

Example:

SET CATALOG 'DB'
SET CATALOG DB_NAME

SET COLLATION

SET [DATABASE] COLLATION
{ OFF | collationName
[STRENGTH { PRIMARY | SECONDARY | TERTIARY | IDENTICAL }] }

Sets the collation used for comparing strings. This command can only be executed
if there are no tables defined. See java.text.Collator for details about the
supported collations and the STRENGTH (PRIMARY is usually case- and umlaut-
insensitive; SECONDARY is case-insensitive but umlaut-sensitive; TERTIARY is
both case- and umlaut-sensitive; IDENTICAL is sensitive to all differences and
only affects ordering).

The ICU4J collator is used if it is in the classpath. It is also used if the collation
name starts with ICU4J_ (in that case, the ICU4J must be in the classpath,
otherwise an exception is thrown). The default collator is used if the collation
name starts with DEFAULT_ (even if ICU4J is in the classpath). The charset
collator is used if the collation name starts with CHARSET_ (e.g.
CHARSET_CP500). This collator sorts strings according to the binary
representation in the given charset.

Admin rights are required to execute this command. This command commits an
open transaction in this connection. This setting is persistent. This setting can be
appended to the database URL: jdbc:h2:./test;COLLATION='ENGLISH'

Example:

SET COLLATION ENGLISH
SET COLLATION CHARSET_CP500

SET COMPRESS_LOB

SET COMPRESS_LOB { NO | LZF | DEFLATE }

This feature is only available for the PageStore storage engine. For the MVStore
engine (the default for H2 version 1.4.x), append ;COMPRESS=TRUE to the
database URL instead.

188 of 347

Sets the compression algorithm for BLOB and CLOB data. Compression is usually
slower, but needs less disk space. LZF is faster but uses more space.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent.

Example:

SET COMPRESS_LOB LZF

SET DATABASE_EVENT_LISTENER

SET DATABASE_EVENT_LISTENER classNameString

Sets the event listener class. An empty string ('') means no listener should be
used. This setting is not persistent.

Admin rights are required to execute this command, except if it is set when
opening the database (in this case it is reset just after opening the database).
This setting can be appended to the database URL:
jdbc:h2:./test;DATABASE_EVENT_LISTENER='sample.MyListener'

Example:

SET DATABASE_EVENT_LISTENER 'sample.MyListener'

SET DB_CLOSE_DELAY

SET DB_CLOSE_DELAY int

Sets the delay for closing a database if all connections are closed. The value -1
means the database is never closed until the close delay is set to some other
value or SHUTDOWN is called. The value 0 means no delay (default; the database
is closed if the last connection to it is closed). Values 1 and larger mean the
number of seconds the database is left open after closing the last connection.

If the application exits normally or System.exit is called, the database is closed
immediately, even if a delay is set.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. This setting can be appended to the database URL:
jdbc:h2:./test;DB_CLOSE_DELAY=-1

189 of 347

Example:

SET DB_CLOSE_DELAY -1

SET DEFAULT_LOCK_TIMEOUT

SET DEFAULT LOCK_TIMEOUT int

Sets the default lock timeout (in milliseconds) in this database that is used for the
new sessions. The default value for this setting is 1000 (one second).

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent.

Example:

SET DEFAULT_LOCK_TIMEOUT 5000

SET DEFAULT_TABLE_TYPE

SET DEFAULT_TABLE_TYPE { MEMORY | CACHED }

Sets the default table storage type that is used when creating new tables.
Memory tables are kept fully in the main memory (including indexes), however
the data is still stored in the database file. The size of memory tables is limited by
the memory. The default is CACHED.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. It has no effect for in-memory databases.

Example:

SET DEFAULT_TABLE_TYPE MEMORY

SET EXCLUSIVE

SET EXCLUSIVE { 0 | 1 | 2 }

Switched the database to exclusive mode (1, 2) and back to normal mode (0).

In exclusive mode, new connections are rejected, and operations by other
connections are paused until the exclusive mode is disabled. When using the

190 of 347

value 1, existing connections stay open. When using the value 2, all existing
connections are closed (and current transactions are rolled back) except the
connection that executes SET EXCLUSIVE. Only the connection that set the
exclusive mode can disable it. When the connection is closed, it is automatically
disabled.

Admin rights are required to execute this command. This command commits an
open transaction in this connection.

Example:

SET EXCLUSIVE 1

SET IGNORECASE

SET IGNORECASE { TRUE | FALSE }

If IGNORECASE is enabled, text columns in newly created tables will be case-
insensitive. Already existing tables are not affected. The effect of case-insensitive
columns is similar to using a collation with strength PRIMARY. Case-insensitive
columns are compared faster than when using a collation. String literals and
parameters are however still considered case sensitive even if this option is set.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. This setting can be appended to the database URL:
jdbc:h2:./test;IGNORECASE=TRUE

Example:

SET IGNORECASE TRUE

SET IGNORE_CATALOGS

SET IGNORE_CATALOGS { TRUE | FALSE }

If IGNORE_CATALOGS is enabled, catalog names in front of schema names will be
ignored. This can be used if multiple catalogs used by the same connections must
be simulated. Caveat: if both catalogs contain schemas of the same name and if
those schemas contain objects of the same name, this will lead to errors, when
trying to manage, access or change these objects. This setting can be appended
to the database URL: jdbc:h2:./test;IGNORE_CATALOGS=TRUE

Example:

191 of 347

SET IGNORE_CATALOGS TRUE

SET JAVA_OBJECT_SERIALIZER

SET JAVA_OBJECT_SERIALIZER
{ null | className }

Sets the object used to serialize and deserialize java objects being stored in
column of type OTHER. The serializer class must be public and implement
org.h2.api.JavaObjectSerializer. Inner classes are not supported. The class must
be available in the classpath of the database engine (when using the server
mode, it must be both in the classpath of the server and the client). This
command can only be executed if there are no tables defined.

Admin rights are required to execute this command. This command commits an
open transaction in this connection. This setting is persistent. This setting can be
appended to the database URL:
jdbc:h2:./test;JAVA_OBJECT_SERIALIZER='com.acme.SerializerClassName'

Example:

SET JAVA_OBJECT_SERIALIZER 'com.acme.SerializerClassName'

SET LAZY_QUERY_EXECUTION

SET LAZY_QUERY_EXECUTION int

Sets the lazy query execution mode. The values 0, 1 are supported.

If true, then large results are retrieved in chunks.

Note that not all queries support this feature, queries which do not are processed
normally.

This command does not commit a transaction, and rollback does not affect it. This
setting can be appended to the database URL:
jdbc:h2:./test;LAZY_QUERY_EXECUTION=1

Example:

SET LAZY_QUERY_EXECUTION 1

192 of 347

SET LOG

SET LOG int

Sets the transaction log mode. The values 0, 1, and 2 are supported, the default
is 2. This setting affects all connections.

LOG 0 means the transaction log is disabled completely. It is the fastest mode,
but also the most dangerous: if the process is killed while the database is open in
this mode, the data might be lost. It must only be used if this is not a problem,
for example when initially loading a database, or when running tests.

LOG 1 means the transaction log is enabled, but FileDescriptor.sync is disabled.
This setting is about half as fast as with LOG 0. This setting is useful if no
protection against power failure is required, but the data must be protected
against killing the process.

LOG 2 (the default) means the transaction log is enabled, and FileDescriptor.sync
is called for each checkpoint. This setting is about half as fast as LOG 1.
Depending on the file system, this will also protect against power failure in the
majority if cases.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is not
persistent. This setting can be appended to the database URL:
jdbc:h2:./test;LOG=0

Example:

SET LOG 1

SET LOCK_MODE

SET LOCK_MODE int

Sets the lock mode. The values 0, 1, 2, and 3 are supported. The default is 3.
This setting affects all connections.

The value 0 means no locking (should only be used for testing). Please note that
using SET LOCK_MODE 0 while at the same time using multiple connections may
result in inconsistent transactions.

The value 1 means table level locking for PageStore engine, for default MVStore
engine it is the same as default 3.

193 of 347

The value 2 means table level locking with garbage collection (if the application
does not close all connections) for PageStore engine, for default MVStore engine
it is the same as default 3.

The value 3 means table level locking, but read locks are released immediately for
PageStore engine, for default MVStore engine it means row-level locking for write
operations.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. This setting can be appended to the database URL:
jdbc:h2:./test;LOCK_MODE=3

Example:

SET LOCK_MODE 1

SET LOCK_TIMEOUT

SET LOCK_TIMEOUT int

Sets the lock timeout (in milliseconds) for the current session. The default value
for this setting is 1000 (one second).

This command does not commit a transaction, and rollback does not affect it. This
setting can be appended to the database URL:
jdbc:h2:./test;LOCK_TIMEOUT=10000

Example:

SET LOCK_TIMEOUT 1000

SET MAX_LENGTH_INPLACE_LOB

SET MAX_LENGTH_INPLACE_LOB int

Sets the maximum size of an in-place LOB object.

This is the maximum length of an LOB that is stored with the record itself, and
the default value is 128.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent.

194 of 347

Example:

SET MAX_LENGTH_INPLACE_LOB 128

SET MAX_LOG_SIZE

SET MAX_LOG_SIZE int

Sets the maximum size of the transaction log, in megabytes. If the log is larger,
and if there is no open transaction, the transaction log is truncated. If there is an
open transaction, the transaction log will continue to grow however. The default
max size is 16 MB. This setting has no effect for in-memory databases.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent.

Example:

SET MAX_LOG_SIZE 2

SET MAX_MEMORY_ROWS

SET MAX_MEMORY_ROWS int

The maximum number of rows in a result set that are kept in-memory. If more
rows are read, then the rows are buffered to disk. The default is 40000 per GB of
available RAM.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. It has no effect for in-memory databases.

Example:

SET MAX_MEMORY_ROWS 1000

SET MAX_MEMORY_UNDO

SET MAX_MEMORY_UNDO int

The maximum number of undo records per a session that are kept in-memory. If
a transaction is larger, the records are buffered to disk. The default value is

195 of 347

50000. Changes to tables without a primary key can not be buffered to disk. This
setting is not supported when using multi-version concurrency.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. It has no effect for in-memory databases.

Example:

SET MAX_MEMORY_UNDO 1000

SET MAX_OPERATION_MEMORY

SET MAX_OPERATION_MEMORY int

Sets the maximum memory used for large operations (delete and insert), in bytes.
Operations that use more memory are buffered to disk, slowing down the
operation. The default max size is 100000. 0 means no limit.

This setting is not persistent. Admin rights are required to execute this command,
as it affects all connections. It has no effect for in-memory databases. This setting
can be appended to the database URL:
jdbc:h2:./test;MAX_OPERATION_MEMORY=10000

Example:

SET MAX_OPERATION_MEMORY 0

SET MODE

SET MODE { REGULAR | DB2 | DERBY | HSQLDB | MSSQLSERVER | MYSQL |
ORACLE | POSTGRESQL }

Changes to another database compatibility mode. For details, see Compatibility
Modes in the feature section.

This setting is not persistent. Admin rights are required to execute this command,
as it affects all connections. This command commits an open transaction in this
connection. This setting can be appended to the database URL:
jdbc:h2:./test;MODE=MYSQL

Example:

SET MODE HSQLDB

196 of 347

SET OPTIMIZE_REUSE_RESULTS

SET OPTIMIZE_REUSE_RESULTS { 0 | 1 }

Enabled (1) or disabled (0) the result reuse optimization. If enabled, subqueries
and views used as subqueries are only re-run if the data in one of the tables was
changed. This option is enabled by default.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting can
be appended to the database URL: jdbc:h2:./test;OPTIMIZE_REUSE_RESULTS=0

Example:

SET OPTIMIZE_REUSE_RESULTS 0

SET PASSWORD

SET PASSWORD string

Changes the password of the current user. The password must be in single
quotes. It is case sensitive and can contain spaces.

This command commits an open transaction in this connection.

Example:

SET PASSWORD 'abcstzri!.5'

SET QUERY_STATISTICS

SET QUERY_STATISTICS { TRUE | FALSE }

Disabled or enables query statistics gathering for the whole database. The
statistics are reflected in the INFORMATION_SCHEMA.QUERY_STATISTICS meta-
table.

This setting is not persistent. This command commits an open transaction in this
connection. Admin rights are required to execute this command, as it affects all
connections.

Example:

SET QUERY_STATISTICS FALSE

197 of 347

SET QUERY_STATISTICS_MAX_ENTRIES

SET QUERY_STATISTICS int

Set the maximum number of entries in query statistics meta-table. Default value
is 100.

This setting is not persistent. This command commits an open transaction in this
connection. Admin rights are required to execute this command, as it affects all
connections.

Example:

SET QUERY_STATISTICS_MAX_ENTRIES 500

SET QUERY_TIMEOUT

SET QUERY_TIMEOUT int

Set the query timeout of the current session to the given value. The timeout is in
milliseconds. All kinds of statements will throw an exception if they take longer
than the given value. The default timeout is 0, meaning no timeout.

This command does not commit a transaction, and rollback does not affect it.

Example:

SET QUERY_TIMEOUT 10000

SET REFERENTIAL_INTEGRITY

SET REFERENTIAL_INTEGRITY { TRUE | FALSE }

Disabled or enables referential integrity checking for the whole database. Enabling
it does not check existing data. Use ALTER TABLE SET to disable it only for one
table.

This setting is not persistent. This command commits an open transaction in this
connection. Admin rights are required to execute this command, as it affects all
connections.

Example:

SET REFERENTIAL_INTEGRITY FALSE

198 of 347

SET RETENTION_TIME

SET RETENTION_TIME int

This property is only used when using the MVStore storage engine. How long to
retain old, persisted data, in milliseconds. The default is 45000 (45 seconds), 0
means overwrite data as early as possible. It is assumed that a file system and
hard disk will flush all write buffers within this time. Using a lower value might be
dangerous, unless the file system and hard disk flush the buffers earlier. To
manually flush the buffers, use CHECKPOINT SYNC, however please note that
according to various tests this does not always work as expected depending on
the operating system and hardware.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting is
persistent. This setting can be appended to the database URL:
jdbc:h2:./test;RETENTION_TIME=0

Example:

SET RETENTION_TIME 0

SET SALT HASH

SET SALT bytes HASH bytes

Sets the password salt and hash for the current user. The password must be in
single quotes. It is case sensitive and can contain spaces.

This command commits an open transaction in this connection.

Example:

SET SALT '00' HASH '1122'

SET SCHEMA

SET SCHEMA { schemaString | schemaName }

Changes the default schema of the current connection. The default schema is
used in statements where no schema is set explicitly. The default schema for new
connections is PUBLIC.

This command does not commit a transaction, and rollback does not affect it. This
setting can be appended to the database URL: jdbc:h2:./test;SCHEMA=ABC

199 of 347

Example:

SET SCHEMA 'PUBLIC'
SET SCHEMA INFORMATION_SCHEMA

SET SCHEMA_SEARCH_PATH

SET SCHEMA_SEARCH_PATH schemaName [,...]

Changes the schema search path of the current connection. The default schema is
used in statements where no schema is set explicitly. The default schema for new
connections is PUBLIC.

This command does not commit a transaction, and rollback does not affect it. This
setting can be appended to the database URL:
jdbc:h2:./test;SCHEMA_SEARCH_PATH=ABC,DEF

Example:

SET SCHEMA_SEARCH_PATH INFORMATION_SCHEMA, PUBLIC

SET SESSION CHARACTERISTICS

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ |
SERIALIZABLE }

Changes the transaction isolation level of the current session. The actual support
of isolation levels depends on the database engine.

This command commits an open transaction in this session.

Example:

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
SERIALIZABLE

SET THROTTLE

SET THROTTLE int

Sets the throttle for the current connection. The value is the number of
milliseconds delay after each 50 ms. The default value is 0 (throttling disabled).

200 of 347

This command does not commit a transaction, and rollback does not affect it. This
setting can be appended to the database URL: jdbc:h2:./test;THROTTLE=50

Example:

SET THROTTLE 200

SET TRACE_LEVEL

SET { TRACE_LEVEL_FILE | TRACE_LEVEL_SYSTEM_OUT } int

Sets the trace level for file the file or system out stream. Levels are: 0=off,
1=error, 2=info, 3=debug. The default level is 1 for file and 0 for system out. To
use SLF4J, append ;TRACE_LEVEL_FILE=4 to the database URL when opening
the database.

This setting is not persistent. Admin rights are required to execute this command,
as it affects all connections. This command does not commit a transaction, and
rollback does not affect it. This setting can be appended to the database URL:
jdbc:h2:./test;TRACE_LEVEL_SYSTEM_OUT=3

Example:

SET TRACE_LEVEL_SYSTEM_OUT 3

SET TRACE_MAX_FILE_SIZE

SET TRACE_MAX_FILE_SIZE int

Sets the maximum trace file size. If the file exceeds the limit, the file is renamed
to .old and a new file is created. If another .old file exists, it is deleted. The
default max size is 16 MB.

This setting is persistent. Admin rights are required to execute this command, as
it affects all connections. This command commits an open transaction in this
connection. This setting can be appended to the database URL:
jdbc:h2:./test;TRACE_MAX_FILE_SIZE=3

Example:

SET TRACE_MAX_FILE_SIZE 10

201 of 347

SET UNDO_LOG

SET UNDO_LOG int

Enables (1) or disables (0) the per session undo log. The undo log is enabled by
default. When disabled, transactions can not be rolled back. This setting should
only be used for bulk operations that don't need to be atomic.

This command commits an open transaction in this connection.

Example:

SET UNDO_LOG 0

SET WRITE_DELAY

SET WRITE_DELAY int

Set the maximum delay between a commit and flushing the log, in milliseconds.
This setting is persistent. The default is 500 ms.

Admin rights are required to execute this command, as it affects all connections.
This command commits an open transaction in this connection. This setting can
be appended to the database URL: jdbc:h2:./test;WRITE_DELAY=0

Example:

SET WRITE_DELAY 2000

SHUTDOWN

SHUTDOWN [IMMEDIATELY | COMPACT | DEFRAG]

This statement closes all open connections to the database and closes the
database. This command is usually not required, as the database is closed
automatically when the last connection to it is closed.

If no option is used, then the database is closed normally. All connections are
closed, open transactions are rolled back.

SHUTDOWN COMPACT fully compacts the database (re-creating the database
may further reduce the database size). If the database is closed normally (using
SHUTDOWN or by closing all connections), then the database is also compacted,
but only for at most the time defined by the database setting
h2.maxCompactTime in milliseconds (see there).

202 of 347

SHUTDOWN IMMEDIATELY closes the database files without any cleanup and
without compacting.

SHUTDOWN DEFRAG re-orders the pages when closing the database so that table
scans are faster. In case of MVStore it is currently equivalent to COMPACT.

Admin rights are required to execute this command.

Example:

SHUTDOWN COMPACT

203 of 347

Functions

Index

Numeric Functions

ABS
ACOS
ASIN
ATAN
COS
COSH
COT
SIN
SINH
TAN
TANH
ATAN2
BITAND
BITGET
BITNOT
BITOR
BITXOR
LSHIFT
RSHIFT
MOD
CEILING
DEGREES
EXP
FLOOR
LN
LOG
LOG10
ORA_HASH
RADIANS
SQRT
PI
POWER
RAND
RANDOM_UUID
ROUND
ROUNDMAGIC

204 of 347

SECURE_RAND
SIGN
ENCRYPT
DECRYPT
HASH
TRUNCATE
COMPRESS
EXPAND
ZERO

String Functions

ASCII
BIT_LENGTH
LENGTH
OCTET_LENGTH
CHAR
CONCAT
CONCAT_WS
DIFFERENCE
HEXTORAW
RAWTOHEX
INSTR
INSERT Function
LOWER
UPPER
LEFT
RIGHT
LOCATE
POSITION
LPAD
RPAD
LTRIM
RTRIM
TRIM
REGEXP_REPLACE
REGEXP_LIKE
REPEAT
REPLACE
SOUNDEX
SPACE
STRINGDECODE
STRINGENCODE
STRINGTOUTF8

205 of 347

SUBSTRING
UTF8TOSTRING
QUOTE_IDENT
XMLATTR
XMLNODE
XMLCOMMENT
XMLCDATA
XMLSTARTDOC
XMLTEXT
TO_CHAR
TRANSLATE

Time and Date Functions

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
LOCALTIME
LOCALTIMESTAMP
DATEADD
DATEDIFF
DAYNAME
DAY_OF_MONTH
DAY_OF_WEEK
ISO_DAY_OF_WEEK
DAY_OF_YEAR
EXTRACT
FORMATDATETIME
HOUR
MINUTE
MONTH
MONTHNAME
PARSEDATETIME
QUARTER
SECOND
WEEK
ISO_WEEK
YEAR
ISO_YEAR

System Functions

ARRAY_GET
ARRAY_LENGTH

206 of 347

ARRAY_CONTAINS
ARRAY_CAT
ARRAY_APPEND
ARRAY_SLICE
AUTOCOMMIT
CANCEL_SESSION
CASEWHEN Function
CAST
COALESCE
CONVERT
CURRVAL
CSVREAD
CSVWRITE
CURRENT_SCHEMA
CURRENT_CATALOG
DATABASE_PATH
DECODE
DISK_SPACE_USED
SIGNAL
ESTIMATED_ENVELOPE
FILE_READ
FILE_WRITE
GREATEST
IDENTITY
IFNULL
LEAST
LOCK_MODE
LOCK_TIMEOUT
LINK_SCHEMA
MEMORY_FREE
MEMORY_USED
NEXTVAL
NULLIF
NVL2
READONLY
ROWNUM
SCOPE_IDENTITY
SESSION_ID
SET
TABLE
TRANSACTION_ID
TRUNCATE_VALUE
UNNEST
USER
H2VERSION

207 of 347

JSON Functions

JSON_OBJECT
JSON_ARRAY

Numeric Functions

ABS

ABS({ numeric | interval })

Returns the absolute value of a specified value. The returned value is of the same
data type as the parameter.

Note that TINYINT, SMALLINT, INT, and BIGINT data types cannot represent
absolute values of their minimum negative values, because they have more
negative values than positive. For example, for INT data type allowed values are
from -2147483648 to 2147483647. ABS(-2147483648) should be 2147483648,
but this value is not allowed for this data type. It leads to an exception. To avoid
it cast argument of this function to a higher data type.

Example:

ABS(VALUE)
ABS(CAST(VALUE AS BIGINT))

ACOS

ACOS(numeric)

Calculate the arc cosine. See also Java Math.acos. This method returns a double.

Example:

ACOS(D)

ASIN

ASIN(numeric)

Calculate the arc sine. See also Java Math.asin. This method returns a double.

Example:

208 of 347

ASIN(D)

ATAN

ATAN(numeric)

Calculate the arc tangent. See also Java Math.atan. This method returns a double.

Example:

ATAN(D)

COS

COS(numeric)

Calculate the trigonometric cosine. See also Java Math.cos. This method returns a
double.

Example:

COS(ANGLE)

COSH

COSH(numeric)

Calculate the hyperbolic cosine. See also Java Math.cosh. This method returns a
double.

Example:

COSH(X)

COT

COT(numeric)

Calculate the trigonometric cotangent (1/TAN(ANGLE)). See also Java Math.*
functions. This method returns a double.

Example:

COT(ANGLE)
209 of 347

SIN

SIN(numeric)

Calculate the trigonometric sine. See also Java Math.sin. This method returns a
double.

Example:

SIN(ANGLE)

SINH

SINH(numeric)

Calculate the hyperbolic sine. See also Java Math.sinh. This method returns a
double.

Example:

SINH(ANGLE)

TAN

TAN(numeric)

Calculate the trigonometric tangent. See also Java Math.tan. This method returns
a double.

Example:

TAN(ANGLE)

TANH

TANH(numeric)

Calculate the hyperbolic tangent. See also Java Math.tanh. This method returns a
double.

Example:

TANH(X)

210 of 347

ATAN2

ATAN2(numeric, numeric)

Calculate the angle when converting the rectangular coordinates to polar
coordinates. See also Java Math.atan2. This method returns a double.

Example:

ATAN2(X, Y)

BITAND

BITAND(long, long)

The bitwise AND operation. This method returns a long. See also Java operator &.

Example:

BITAND(A, B)

BITGET

BITGET(long, int)

Returns true if and only if the first parameter has a bit set in the position specified
by the second parameter. This method returns a boolean. The second parameter
is zero-indexed; the least significant bit has position 0.

Example:

BITGET(A, 1)

BITNOT

BITNOT(long)

The bitwise NOT operation. This method returns a long. See also Java operator ~.

Example:

BITNOT(A)

211 of 347

BITOR

BITOR(long, long)

The bitwise OR operation. This method returns a long. See also Java operator |.

Example:

BITOR(A, B)

BITXOR

BITXOR(long, long)

The bitwise XOR operation. This method returns a long. See also Java operator ^.

Example:

BITXOR(A, B)

LSHIFT

LSHIFT(long, int)

The bitwise left shift operation. Shifts the first argument by the number of bits
given by the second argument. This method returns a long. See also Java
operator <<.

Example:

LSHIFT(A, B)

RSHIFT

RSHIFT(long, int)

The bitwise right shift operation. Shifts the first argument by the number of bits
given by the second argument. This method returns a long. See also Java
operator >>.

Example:

RSHIFT(A, B)

212 of 347

MOD

MOD(long, long)

The modulo operation. This method returns a long. See also Java operator %.

Example:

MOD(A, B)

CEILING

{ CEILING | CEIL } (numeric)

Returns the smallest integer value that is greater than or equal to the argument.
This method returns a double, float, or numeric value depending on type of the
argument.

Example:

CEIL(A)

DEGREES

DEGREES(numeric)

See also Java Math.toDegrees. This method returns a double.

Example:

DEGREES(A)

EXP

EXP(numeric)

See also Java Math.exp. This method returns a double.

Example:

EXP(A)

213 of 347

FLOOR

FLOOR(numeric)

Returns the largest integer value that is less than or equal to the argument. This
method returns a double, float, or numeric value depending on type of the
argument.

Example:

FLOOR(A)

LN

LN(numeric)

Calculates the natural (base e) logarithm as a double value. Argument must be a
positive numeric value.

Example:

LN(A)

LOG

LOG([baseNumeric,] numeric)

Calculates the logarithm with specified base as a double value. Argument and
base must be positive numeric values. Base cannot be equal to 1. The default
base is e (natural logarithm), in the PostgreSQL mode the default base is base 10.
In MSSQLServer mode the optional base is specified after the argument.

Example:

LOG(2, A)

LOG10

LOG10(numeric)

Calculates the base 10 logarithm as a double value. Argument must be a positive
numeric value.

Example:

214 of 347

LOG10(A)

ORA_HASH

ORA_HASH(expression [, bucketLong [, seedLong]])

Computes a hash value. Optional bucket argument determines the maximum
returned value. This argument should be between 0 and 4294967295, default is
4294967295. Optional seed argument is combined with the given expression to
return the different values for the same expression. This argument should be
between 0 and 4294967295, default is 0. This method returns a long value
between 0 and the specified or default bucket value inclusive.

Example:

ORA_HASH(A)

RADIANS

RADIANS(numeric)

See also Java Math.toRadians. This method returns a double.

Example:

RADIANS(A)

SQRT

SQRT(numeric)

See also Java Math.sqrt. This method returns a double.

Example:

SQRT(A)

PI

PI()

See also Java Math.PI. This method returns a double.

215 of 347

Example:

PI()

POWER

POWER(numeric, numeric)

See also Java Math.pow. This method returns a double.

Example:

POWER(A, B)

RAND

{ RAND | RANDOM } ([int])

Calling the function without parameter returns the next a pseudo random number.
Calling it with an parameter seeds the session's random number generator. This
method returns a double between 0 (including) and 1 (excluding).

Example:

RAND()

RANDOM_UUID

{ RANDOM_UUID | UUID } ()

Returns a new UUID with 122 pseudo random bits.

Please note that using an index on randomly generated data will result on poor
performance once there are millions of rows in a table. The reason is that the
cache behavior is very bad with randomly distributed data. This is a problem for
any database system.

Example:

RANDOM_UUID()

216 of 347

ROUND

ROUND(numeric [, digitsInt])

Rounds to a number of fractional digits. This method returns a double, float, or
numeric value depending on type of the argument.

Example:

ROUND(VALUE, 2)

ROUNDMAGIC

ROUNDMAGIC(numeric)

This function rounds numbers in a good way, but it is slow. It has a special
handling for numbers around 0. Only numbers smaller or equal +/-
1000000000000 are supported. The value is converted to a String internally, and
then the last 4 characters are checked. '000x' becomes '0000' and '999x' becomes
'999999', which is rounded automatically. This method returns a double.

Example:

ROUNDMAGIC(VALUE/3*3)

SECURE_RAND

SECURE_RAND(int)

Generates a number of cryptographically secure random numbers. This method
returns bytes.

Example:

CALL SECURE_RAND(16)

SIGN

SIGN({ numeric | interval })

Returns -1 if the value is smaller than 0, 0 if zero, and otherwise 1.

Example:

217 of 347

SIGN(VALUE)

ENCRYPT

ENCRYPT(algorithmString, keyBytes, dataBytes)

Encrypts data using a key. The supported algorithm is AES. The block size is 16
bytes. This method returns bytes.

Example:

CALL ENCRYPT('AES', '00', STRINGTOUTF8('Test'))

DECRYPT

DECRYPT(algorithmString, keyBytes, dataBytes)

Decrypts data using a key. The supported algorithm is AES. The block size is 16
bytes. This method returns bytes.

Example:

CALL TRIM(CHAR(0) FROM UTF8TOSTRING(
 DECRYPT('AES', '00', '3fabb4de8f1ee2e97d7793bab2db1116')))

HASH

HASH(algorithmString, expression [, iterationInt])

Calculate the hash value using an algorithm, and repeat this process for a number
of iterations. Currently, the only algorithm supported is SHA256. This method
returns bytes.

Example:

CALL HASH('SHA256', STRINGTOUTF8('Password'), 1000)

TRUNCATE

{ TRUNC | TRUNCATE } ({ {numeric [, digitsInt] }
| timestamp | timestampWithTimeZone | date | timestampString })

218 of 347

When a numeric argument is specified, truncates it to a number of digits (to the
next value closer to 0) and returns a double, float, or numeric value depending on
type of the argument. When used with a timestamp, truncates the timestamp to a
date (day) value and returns a timestamp with or without time zone depending on
type of the argument. When used with a date, returns a timestamp at start of this
date. When used with a timestamp as string, truncates the timestamp to a date
(day) value and returns a timestamp without time zone.

Example:

TRUNCATE(VALUE, 2)

COMPRESS

COMPRESS(dataBytes [, algorithmString])

Compresses the data using the specified compression algorithm. Supported
algorithms are: LZF (faster but lower compression; default), and DEFLATE (higher
compression). Compression does not always reduce size. Very small objects and
objects with little redundancy may get larger. This method returns bytes.

Example:

COMPRESS(STRINGTOUTF8('Test'))

EXPAND

EXPAND(bytes)

Expands data that was compressed using the COMPRESS function. This method
returns bytes.

Example:

UTF8TOSTRING(EXPAND(COMPRESS(STRINGTOUTF8('Test'))))

ZERO

ZERO()

Returns the value 0. This function can be used even if numeric literals are
disabled.

Example:

219 of 347

ZERO()

String Functions

ASCII

ASCII(string)

Returns the ASCII value of the first character in the string. This method returns
an int.

Example:

ASCII('Hi')

BIT_LENGTH

BIT_LENGTH(string)

Returns the number of bits in a string. This method returns a long. For BLOB,
CLOB, BYTES and JAVA_OBJECT, the precision is used. Each character needs 16
bits.

Example:

BIT_LENGTH(NAME)

LENGTH

{ LENGTH | CHAR_LENGTH | CHARACTER_LENGTH } (string)

Returns the number of characters in a string. This method returns a long. For
BLOB, CLOB, BYTES and JAVA_OBJECT, the precision is used.

Example:

LENGTH(NAME)

OCTET_LENGTH

OCTET_LENGTH(string)

220 of 347

Returns the number of bytes in a string. This method returns a long. For BLOB,
CLOB, BYTES and JAVA_OBJECT, the precision is used. Each character needs 2
bytes.

Example:

OCTET_LENGTH(NAME)

CHAR

{ CHAR | CHR } (int)

Returns the character that represents the ASCII value. This method returns a
string.

Example:

CHAR(65)

CONCAT

CONCAT(string, string [,...])

Combines strings. Unlike with the operator ||, NULL parameters are ignored, and
do not cause the result to become NULL. This method returns a string.

Example:

CONCAT(NAME, '!')

CONCAT_WS

CONCAT_WS(separatorString, string, string [,...])

Combines strings with separator. Unlike with the operator ||, NULL parameters
are ignored, and do not cause the result to become NULL. This method returns a
string.

Example:

CONCAT_WS(',', NAME, '!')

221 of 347

DIFFERENCE

DIFFERENCE(string, string)

Returns the difference between the sounds of two strings. The difference is
calculated as a number of matched characters in the same positions in SOUNDEX
representations of arguments. This method returns an int between 0 and 4
inclusive, or null if any of its parameters is null. Note that value of 0 means that
strings are not similar to each other. Value of 4 means that strings are fully similar
to each other (have the same SOUNDEX representation).

Example:

DIFFERENCE(T1.NAME, T2.NAME)

HEXTORAW

HEXTORAW(string)

Converts a hex representation of a string to a string. 4 hex characters per string
character are used.

Example:

HEXTORAW(DATA)

RAWTOHEX

RAWTOHEX(string|bytes)

Converts a string or bytes to the hex representation. 4 hex characters per string
character are used. This method returns a string.

Example:

RAWTOHEX(DATA)

INSTR

INSTR(string, searchString, [, startInt])

Returns the location of a search string in a string. If a start position is used, the
characters before it are ignored. If position is negative, the rightmost location is

222 of 347

returned. 0 is returned if the search string is not found. Please note this function
is case sensitive, even if the parameters are not.

Example:

INSTR(EMAIL,'@')

INSERT Function

INSERT(originalString, startInt, lengthInt, addString)

Inserts a additional string into the original string at a specified start position. The
length specifies the number of characters that are removed at the start position in
the original string. This method returns a string.

Example:

INSERT(NAME, 1, 1, ' ')

LOWER

{ LOWER | LCASE } (string)

Converts a string to lowercase.

Example:

LOWER(NAME)

UPPER

{ UPPER | UCASE } (string)

Converts a string to uppercase.

Example:

UPPER(NAME)

LEFT

LEFT(string, int)

Returns the leftmost number of characters.
223 of 347

Example:

LEFT(NAME, 3)

RIGHT

RIGHT(string, int)

Returns the rightmost number of characters.

Example:

RIGHT(NAME, 3)

LOCATE

LOCATE(searchString, string [, startInt])

Returns the location of a search string in a string. If a start position is used, the
characters before it are ignored. If position is negative, the rightmost location is
returned. 0 is returned if the search string is not found.

Example:

LOCATE('.', NAME)

POSITION

POSITION(searchString, string)

Returns the location of a search string in a string. See also LOCATE.

Example:

POSITION('.', NAME)

LPAD

LPAD(string, int[, paddingString])

Left pad the string to the specified length. If the length is shorter than the string,
it will be truncated at the end. If the padding string is not set, spaces will be
used.

224 of 347

Example:

LPAD(AMOUNT, 10, '*')

RPAD

RPAD(string, int[, paddingString])

Right pad the string to the specified length. If the length is shorter than the
string, it will be truncated. If the padding string is not set, spaces will be used.

Example:

RPAD(TEXT, 10, '-')

LTRIM

LTRIM(string)

Removes all leading spaces from a string.

Example:

LTRIM(NAME)

RTRIM

RTRIM(string)

Removes all trailing spaces from a string.

Example:

RTRIM(NAME)

TRIM

TRIM ([[LEADING | TRAILING | BOTH] [string] FROM] string)

Removes all leading spaces, trailing spaces, or spaces at both ends, from a string.
Other characters can be removed as well.

Example:

225 of 347

TRIM(BOTH '_' FROM NAME)

REGEXP_REPLACE

REGEXP_REPLACE(inputString, regexString, replacementString [, flagsString])

Replaces each substring that matches a regular expression. For details, see the
Java String.replaceAll() method. If any parameter is null (except optional
flagsString parameter), the result is null.

Flags values limited to 'i', 'c', 'n', 'm'. Other symbols causes exception. Multiple
symbols could be uses in one flagsString parameter (like 'im'). Later flags
overrides first ones, for example 'ic' equivalent to case sensitive matching 'c'.

'i' enables case insensitive matching (Pattern.CASE_INSENSITIVE)

'c' disables case insensitive matching (Pattern.CASE_INSENSITIVE)

'n' allows the period to match the newline character (Pattern.DOTALL)

'm' enables multiline mode (Pattern.MULTILINE)

Example:

REGEXP_REPLACE('Hello World', ' +', ' ')
REGEXP_REPLACE('Hello WWWWorld', 'w+', 'W', 'i')

REGEXP_LIKE

REGEXP_LIKE(inputString, regexString [, flagsString])

Matches string to a regular expression. For details, see the Java Matcher.find()
method. If any parameter is null (except optional flagsString parameter), the
result is null.

Flags values limited to 'i', 'c', 'n', 'm'. Other symbols causes exception. Multiple
symbols could be uses in one flagsString parameter (like 'im'). Later flags
overrides first ones, for example 'ic' equivalent to case sensitive matching 'c'.

'i' enables case insensitive matching (Pattern.CASE_INSENSITIVE)

'c' disables case insensitive matching (Pattern.CASE_INSENSITIVE)

'n' allows the period to match the newline character (Pattern.DOTALL)

'm' enables multiline mode (Pattern.MULTILINE)
226 of 347

Example:

REGEXP_LIKE('Hello World', '[A-Z]*', 'i')

REPEAT

REPEAT(string, int)

Returns a string repeated some number of times.

Example:

REPEAT(NAME || ' ', 10)

REPLACE

REPLACE(string, searchString [, replacementString])

Replaces all occurrences of a search string in a text with another string. If no
replacement is specified, the search string is removed from the original string. If
any parameter is null, the result is null.

Example:

REPLACE(NAME, ' ')

SOUNDEX

SOUNDEX(string)

Returns a four character code representing the sound of a string. This method
returns a string, or null if parameter is null. See
https://en.wikipedia.org/wiki/Soundex for more information.

Example:

SOUNDEX(NAME)

SPACE

SPACE(int)

Returns a string consisting of a number of spaces.

227 of 347

https://en.wikipedia.org/wiki/Soundex

Example:

SPACE(80)

STRINGDECODE

STRINGDECODE(string)

Converts a encoded string using the Java string literal encoding format. Special
characters are \b, \t, \n, \f, \r, \", \\, \<octal>, \u<unicode>. This method returns
a string.

Example:

CALL STRINGENCODE(STRINGDECODE('Lines 1\nLine 2'))

STRINGENCODE

STRINGENCODE(string)

Encodes special characters in a string using the Java string literal encoding
format. Special characters are \b, \t, \n, \f, \r, \", \\, \<octal>, \u<unicode>. This
method returns a string.

Example:

CALL STRINGENCODE(STRINGDECODE('Lines 1\nLine 2'))

STRINGTOUTF8

STRINGTOUTF8(string)

Encodes a string to a byte array using the UTF8 encoding format. This method
returns bytes.

Example:

CALL UTF8TOSTRING(STRINGTOUTF8('This is a test'))

SUBSTRING

SUBSTRING ({string|bytes} FROM startInt [FOR lengthInt])
| { SUBSTRING | SUBSTR } ({string|bytes}, startInt [, lengthInt])

228 of 347

Returns a substring of a string starting at a position. If the start index is negative,
then the start index is relative to the end of the string. The length is optional.

Example:

CALL SUBSTRING('[Hello]' FROM 2 FOR 5);
CALL SUBSTRING('hour' FROM 2);
CALL SUBSTR('Hello World', -5);

UTF8TOSTRING

UTF8TOSTRING(bytes)

Decodes a byte array in the UTF8 format to a string.

Example:

CALL UTF8TOSTRING(STRINGTOUTF8('This is a test'))

QUOTE_IDENT

QUOTE_IDENT(string)

Quotes the specified identifier. Identifier is surrounded by double quotes. If
identifier contains double quotes they are repeated twice.

Example:

QUOTE_IDENT('Column 1')

XMLATTR

XMLATTR(nameString, valueString)

Creates an XML attribute element of the form name=value. The value is encoded
as XML text. This method returns a string.

Example:

CALL XMLNODE('a', XMLATTR('href', 'https://h2database.com'))

229 of 347

XMLNODE

XMLNODE(elementString [, attributesString [, contentString [, indentBoolean]]])

Create an XML node element. An empty or null attribute string means no
attributes are set. An empty or null content string means the node is empty. The
content is indented by default if it contains a newline. This method returns a
string.

Example:

CALL XMLNODE('a', XMLATTR('href', 'https://h2database.com'), 'H2')

XMLCOMMENT

XMLCOMMENT(commentString)

Creates an XML comment. Two dashes (--) are converted to - -. This method
returns a string.

Example:

CALL XMLCOMMENT('Test')

XMLCDATA

XMLCDATA(valueString)

Creates an XML CDATA element. If the value contains]]>, an XML text element is
created instead. This method returns a string.

Example:

CALL XMLCDATA('data')

XMLSTARTDOC

XMLSTARTDOC()

Returns the XML declaration. The result is always <?xml version=1.0?>.

Example:

CALL XMLSTARTDOC()

230 of 347

XMLTEXT

XMLTEXT(valueString [, escapeNewlineBoolean])

Creates an XML text element. If enabled, newline and linefeed is converted to an
XML entity (&#). This method returns a string.

Example:

CALL XMLTEXT('test')

TO_CHAR

TO_CHAR(value [, formatString[, nlsParamString]])

Oracle-compatible TO_CHAR function that can format a timestamp, a number, or
text.

Example:

CALL TO_CHAR(TIMESTAMP '2010-01-01 00:00:00', 'DD MON, YYYY')

TRANSLATE

TRANSLATE(value, searchString, replacementString)

Oracle-compatible TRANSLATE function that replaces a sequence of characters in
a string with another set of characters.

Example:

CALL TRANSLATE('Hello world', 'eo', 'EO')

Time and Date Functions

CURRENT_DATE

CURRENT_DATE | CURDATE() | SYSDATE | TODAY

Returns the current date.

These functions always return the same value within a transaction (default) or
within a command depending on database mode.

231 of 347

Example:

CURRENT_DATE

CURRENT_TIME

CURRENT_TIME [(int)]

Returns the current time with time zone. If fractional seconds precision is
specified it should be from 0 to 9, 0 is default. The specified value can be used
only to limit precision of a result. The actual maximum available precision
depends on operating system and JVM and can be 3 (milliseconds) or higher.
Higher precision is not available before Java 9.

This function always returns the same value within a transaction (default) or
within a command depending on database mode.

Example:

CURRENT_TIME
CURRENT_TIME(9)

CURRENT_TIMESTAMP

CURRENT_TIMESTAMP [(int)]

Returns the current timestamp with time zone. Time zone offset is set to a current
time zone offset. If fractional seconds precision is specified it should be from 0 to
9, 6 is default. The specified value can be used only to limit precision of a result.
The actual maximum available precision depends on operating system and JVM
and can be 3 (milliseconds) or higher. Higher precision is not available before
Java 9.

This function always returns the same value within a transaction (default) or
within a command depending on database mode.

Example:

CURRENT_TIMESTAMP
CURRENT_TIMESTAMP(9)

LOCALTIME

LOCALTIME [(int)] | CURTIME([int])

232 of 347

Returns the current time without time zone. If fractional seconds precision is
specified it should be from 0 to 9, 0 is default. The specified value can be used
only to limit precision of a result. The actual maximum available precision
depends on operating system and JVM and can be 3 (milliseconds) or higher.
Higher precision is not available before Java 9.

These functions always return the same value within a transaction (default) or
within a command depending on database mode.

Example:

LOCALTIME
LOCALTIME(9)

LOCALTIMESTAMP

LOCALTIMESTAMP [(int)] | NOW([int])

Returns the current timestamp without time zone. If fractional seconds precision
is specified it should be from 0 to 9, 6 is default. The specified value can be used
only to limit precision of a result. The actual maximum available precision
depends on operating system and JVM and can be 3 (milliseconds) or higher.
Higher precision is not available before Java 9.

The returned value has date and time without time zone information. If time zone
has DST transitions the returned values are ambiguous during transition from DST
to normal time. For absolute timestamps use the CURRENT_TIMESTAMP function
and TIMESTAMP WITH TIME ZONE data type.

These functions always return the same value within a transaction (default) or
within a command depending on database mode.

Example:

LOCALTIMESTAMP
LOCALTIMESTAMP(9)

DATEADD

{ DATEADD| TIMESTAMPADD } (datetimeField, addIntLong, dateAndTime)

Adds units to a date-time value. The datetimeField indicates the unit. Use
negative values to subtract units. addIntLong may be a long value when
manipulating milliseconds, microseconds, or nanoseconds otherwise its range is
restricted to int. This method returns a value with the same type as specified

233 of 347

value if unit is compatible with this value. If specified field is a HOUR, MINUTE,
SECOND, MILLISECOND, etc and value is a DATE value DATEADD returns
combined TIMESTAMP. Fields DAY, MONTH, YEAR, WEEK, etc are not allowed for
TIME values. Fields TIMEZONE_HOUR, TIMEZONE_MINUTE, and
TIMEZONE_SECOND are only allowed for TIMESTAMP WITH TIME ZONE values.

Example:

DATEADD(MONTH, 1, DATE '2001-01-31')

DATEDIFF

{ DATEDIFF | TIMESTAMPDIFF } (datetimeField, aDateAndTime, bDateAndTime)

Returns the number of crossed unit boundaries between two date/time values.
This method returns a long. The datetimeField indicates the unit. Only
TIMEZONE_HOUR, TIMEZONE_MINUTE, and TIMEZONE_SECOND fields use the
time zone offset component. With all other fields if date/time values have time
zone offset component it is ignored.

Example:

DATEDIFF(YEAR, T1.CREATED, T2.CREATED)

DAYNAME

DAYNAME(dateAndTime)

Returns the name of the day (in English).

Example:

DAYNAME(CREATED)

DAY_OF_MONTH

DAY_OF_MONTH(dateAndTime|interval)

Returns the day of the month (1-31).

Example:

DAY_OF_MONTH(CREATED)

234 of 347

DAY_OF_WEEK

DAY_OF_WEEK(dateAndTime)

Returns the day of the week (1 means Sunday).

Example:

DAY_OF_WEEK(CREATED)

ISO_DAY_OF_WEEK

ISO_DAY_OF_WEEK(dateAndTime)

Returns the ISO day of the week (1 means Monday).

Example:

ISO_DAY_OF_WEEK(CREATED)

DAY_OF_YEAR

DAY_OF_YEAR(dateAndTime|interval)

Returns the day of the year (1-366).

Example:

DAY_OF_YEAR(CREATED)

EXTRACT

EXTRACT (datetimeField FROM { dateAndTime | interval })

Returns a value of the specific time unit from a date/time value. This method
returns a numeric value with EPOCH field and an int for all other fields.

Example:

EXTRACT(SECOND FROM CURRENT_TIMESTAMP)

235 of 347

FORMATDATETIME

FORMATDATETIME (dateAndTime, formatString
[, localeString [, timeZoneString]])

Formats a date, time or timestamp as a string. The most important format
characters are: y year, M month, d day, H hour, m minute, s second. For details
of the format, see java.text.SimpleDateFormat. timeZoneString may be specified if
dateAndTime is a DATE, TIME or TIMESTAMP. timeZoneString is ignored if
dateAndTime is TIMESTAMP WITH TIME ZONE. This method returns a string.

Example:

CALL FORMATDATETIME(TIMESTAMP '2001-02-03 04:05:06',
 'EEE, d MMM yyyy HH:mm:ss z', 'en', 'GMT')

HOUR

HOUR(dateAndTime|interval)

Returns the hour (0-23) from a date/time value.

Example:

HOUR(CREATED)

MINUTE

MINUTE(dateAndTime|interval)

Returns the minute (0-59) from a date/time value.

Example:

MINUTE(CREATED)

MONTH

MONTH(dateAndTime|interval)

Returns the month (1-12) from a date/time value.

Example:

236 of 347

MONTH(CREATED)

MONTHNAME

MONTHNAME(dateAndTime)

Returns the name of the month (in English).

Example:

MONTHNAME(CREATED)

PARSEDATETIME

PARSEDATETIME(string, formatString
[, localeString [, timeZoneString]])

Parses a string and returns a timestamp. The most important format characters
are: y year, M month, d day, H hour, m minute, s second. For details of the
format, see java.text.SimpleDateFormat.

Example:

CALL PARSEDATETIME('Sat, 3 Feb 2001 03:05:06 GMT',
 'EEE, d MMM yyyy HH:mm:ss z', 'en', 'GMT')

QUARTER

QUARTER(dateAndTime)

Returns the quarter (1-4) from a date/time value.

Example:

QUARTER(CREATED)

SECOND

SECOND(dateAndTime)

Returns the second (0-59) from a date/time value.

Example:

237 of 347

SECOND(CREATED|interval)

WEEK

WEEK(dateAndTime)

Returns the week (1-53) from a date/time value. This method uses the current
system locale.

Example:

WEEK(CREATED)

ISO_WEEK

ISO_WEEK(dateAndTime)

Returns the ISO week (1-53) from a date/time value. This function uses the ISO
definition when first week of year should have at least four days and week is
started with Monday.

Example:

ISO_WEEK(CREATED)

YEAR

YEAR(dateAndTime|interval)

Returns the year from a date/time value.

Example:

YEAR(CREATED)

ISO_YEAR

ISO_YEAR(dateAndTime)

Returns the ISO week year from a date/time value.

Example:

ISO_YEAR(CREATED)
238 of 347

System Functions

ARRAY_GET

ARRAY_GET(arrayExpression, indexExpression)

Returns element at the specified 1-based index from an array. Returns NULL if
there is no such element or array is NULL.

Example:

CALL ARRAY_GET(ARRAY['Hello', 'World'], 2)

ARRAY_LENGTH

ARRAY_LENGTH(arrayExpression)

Returns the length of an array. Returns NULL if the specified array is NULL.

Example:

CALL ARRAY_LENGTH(ARRAY['Hello', 'World'])

ARRAY_CONTAINS

ARRAY_CONTAINS(arrayExpression, value)

Returns a boolean TRUE if the array contains the value or FALSE if it does not
contain it. Returns NULL if the specified array is NULL.

Example:

CALL ARRAY_CONTAINS(ARRAY['Hello', 'World'], 'Hello')

ARRAY_CAT

ARRAY_CAT(arrayExpression, arrayExpression)

Returns the concatenation of two arrays. Returns NULL if any parameter is NULL.

Example:

CALL ARRAY_CAT(ARRAY[1, 2], ARRAY[3, 4])

239 of 347

ARRAY_APPEND

ARRAY_APPEND(arrayExpression, value)

Append an element to the end of an array. Returns NULL if any parameter is
NULL.

Example:

CALL ARRAY_APPEND(ARRAY[1, 2], 3)

ARRAY_SLICE

ARRAY_SLICE(arrayExpression, lowerBoundInt, upperBoundInt)

Returns elements from the array as specified by the lower and upper bound
parameters. Both parameters are inclusive and the first element has index 1, i.e.
ARRAY_SLICE(a, 2, 2) has only the second element. Returns NULL if any
parameter is NULL or if an index is out of bounds.

Example:

CALL ARRAY_SLICE(ARRAY[1, 2, 3, 4], 1, 3)

AUTOCOMMIT

AUTOCOMMIT()

Returns true if auto commit is switched on for this session.

Example:

AUTOCOMMIT()

CANCEL_SESSION

CANCEL_SESSION(sessionInt)

Cancels the currently executing statement of another session. The method only
works with default MVStore engine. Returns true if the statement was canceled,
false if the session is closed or no statement is currently executing.

Admin rights are required to execute this command.

240 of 347

Example:

CANCEL_SESSION(3)

CASEWHEN Function

CASEWHEN(boolean, aValue, bValue)

Returns 'a' if the boolean expression is true, otherwise 'b'. Returns the same data
type as the parameter.

Example:

CASEWHEN(ID=1, 'A', 'B')

CAST

CAST(value AS dataType)

Converts a value to another data type. The following conversion rules are used:
When converting a number to a boolean, 0 is false and every other value is true.
When converting a boolean to a number, false is 0 and true is 1. When converting
a number to a number of another type, the value is checked for overflow. When
converting a number to binary, the number of bytes matches the precision. When
converting a string to binary, it is hex encoded (every byte two characters); a hex
string can be converted to a number by first converting it to binary. If a direct
conversion is not possible, the value is first converted to a string. Note that some
data types may need explicitly specified precision to avoid overflow or rounding.

Example:

CAST(NAME AS INT);
CAST(65535 AS BINARY);
CAST(CAST('FFFF' AS BINARY) AS INT);
CAST(TIMESTAMP '2010-01-01 10:40:00.123456' AS TIME(6))

COALESCE

{ COALESCE | NVL } (aValue, bValue [,...])

Returns the first value that is not null.

Example:

241 of 347

COALESCE(A, B, C)

CONVERT

CONVERT(value, dataType)

Converts a value to another data type.

Example:

CONVERT(NAME, INT)

CURRVAL

CURRVAL([schemaNameString,] sequenceString)

Returns the latest generated value of the sequence for the current session.
Current value may only be requested after generation of the sequence value in
the current session. This method exists only for compatibility, when it isn't
required use CURRENT VALUE FOR sequenceName instead. If the schema name
is not set, the current schema is used. When sequence is not found, the
uppercase name is also checked. This method returns a long.

Example:

CURRVAL('TEST_SEQ')

CSVREAD

CSVREAD(fileNameString [, columnsString [, csvOptions]])

Returns the result set of reading the CSV (comma separated values) file. For each
parameter, NULL means the default value should be used.

If the column names are specified (a list of column names separated with the
fieldSeparator), those are used, otherwise (or if they are set to NULL) the first line
of the file is interpreted as the column names. In that case, column names that
contain no special characters (only letters, '_', and digits; similar to the rule for
Java identifiers) are processed is the same way as unquoted identifiers and
therefore case of characters may be changed. Other column names are processed
as quoted identifiers and case of characters is preserved. To preserve the case of
column names unconditionally use caseSensitiveColumnNames option.

242 of 347

The default charset is the default value for this system, and the default field
separator is a comma. Missing unquoted values as well as data that matches
nullString is parsed as NULL. All columns are of type VARCHAR.

The BOM (the byte-order-mark) character 0xfeff at the beginning of the file is
ignored.

This function can be used like a table: SELECT * FROM CSVREAD(...).

Instead of a file, a URL may be used, for example
jar:file:///c:/temp/example.zip!/org/example/nested.csv. To read a stream from
the classpath, use the prefix classpath:. To read from HTTP, use the prefix http:
(as in a browser).

For performance reason, CSVREAD should not be used inside a join. Instead,
import the data first (possibly into a temporary table) and then use the table.

Admin rights are required to execute this command.

Example:

CALL CSVREAD('test.csv');
-- Read a file containing the columns ID, NAME with
CALL CSVREAD('test2.csv', 'ID|NAME', 'charset=UTF-8 fieldSeparator=|');
SELECT * FROM CSVREAD('data/test.csv', null, 'rowSeparator=;');
-- Read a tab-separated file
SELECT * FROM CSVREAD('data/test.tsv', null, 'rowSeparator=' || CHAR(9));
SELECT "Last Name" FROM CSVREAD('address.csv');
SELECT "Last Name" FROM CSVREAD('classpath:/org/acme/data/address.csv');

CSVWRITE

CSVWRITE (fileNameString, queryString [, csvOptions [, lineSepString]])

Writes a CSV (comma separated values). The file is overwritten if it exists. If only
a file name is specified, it will be written to the current working directory. For
each parameter, NULL means the default value should be used. The default
charset is the default value for this system, and the default field separator is a
comma.

The values are converted to text using the default string representation; if
another conversion is required you need to change the select statement
accordingly. The parameter nullString is used when writing NULL (by default
nothing is written when NULL appears). The default line separator is the default
value for this system (system property line.separator).

243 of 347

The returned value is the number or rows written. Admin rights are required to
execute this command.

Example:

CALL CSVWRITE('data/test.csv', 'SELECT * FROM TEST');
CALL CSVWRITE('data/test2.csv', 'SELECT * FROM TEST', 'charset=UTF-8
fieldSeparator=|');
-- Write a tab-separated file
CALL CSVWRITE('data/test.tsv', 'SELECT * FROM TEST', 'charset=UTF-8
fieldSeparator=' || CHAR(9));

CURRENT_SCHEMA

CURRENT_SCHEMA | SCHEMA()

Returns the name of the default schema for this session.

Example:

CALL CURRENT_SCHEMA

CURRENT_CATALOG

CURRENT_CATALOG | DATABASE()

Returns the name of the database.

Example:

CALL CURRENT_CATALOG

DATABASE_PATH

DATABASE_PATH()

Returns the directory of the database files and the database name, if it is file
based. Returns NULL otherwise.

Example:

CALL DATABASE_PATH();

244 of 347

DECODE

DECODE(value, whenValue, thenValue [,...])

Returns the first matching value. NULL is considered to match NULL. If no match
was found, then NULL or the last parameter (if the parameter count is even) is
returned. This function is provided for Oracle compatibility (see there for details).

Example:

CALL DECODE(RAND()>0.5, 0, 'Red', 1, 'Black');

DISK_SPACE_USED

DISK_SPACE_USED(tableNameString)

Returns the approximate amount of space used by the table specified. Does not
currently take into account indexes or LOB's. This function may be expensive
since it has to load every page in the table.

Example:

CALL DISK_SPACE_USED('my_table');

SIGNAL

SIGNAL(sqlStateString, messageString)

Throw an SQLException with the passed SQLState and reason.

Example:

CALL SIGNAL('23505', 'Duplicate user ID: ' || user_id);

ESTIMATED_ENVELOPE

ESTIMATED_ENVELOPE(tableNameString, columnNameString)

Returns the estimated minimum bounding box that encloses all specified
GEOMETRY values. Only 2D coordinate plane is supported. NULL values are
ignored. This function is only supported by MVStore engine. Column must have a
spatial index. This function is fast, but estimation may include uncommitted data
(including data from other transactions), may return approximate bounds, or be
different with actual value due to other reasons. Use with caution. If estimation is

245 of 347

not available this function returns NULL. For accurate and reliable result use
ESTIMATE aggregate function instead.

Example:

CALL ESTIMATED_ENVELOPE('MY_TABLE', 'GEOMETRY_COLUMN');

FILE_READ

FILE_READ(fileNameString [,encodingString])

Returns the contents of a file. If only one parameter is supplied, the data are
returned as a BLOB. If two parameters are used, the data is returned as a CLOB
(text). The second parameter is the character set to use, NULL meaning the
default character set for this system.

File names and URLs are supported. To read a stream from the classpath, use the
prefix classpath:.

Admin rights are required to execute this command.

Example:

SELECT LENGTH(FILE_READ('~/.h2.server.properties')) LEN;
SELECT FILE_READ('http://localhost:8182/stylesheet.css', NULL) CSS;

FILE_WRITE

FILE_WRITE(blobValue, fileNameString)

Write the supplied parameter into a file. Return the number of bytes written.

Write access to folder, and admin rights are required to execute this command.

Example:

SELECT FILE_WRITE('Hello world', '/tmp/hello.txt')) LEN;

GREATEST

GREATEST(aValue, bValue [,...])

Returns the largest value that is not NULL, or NULL if all values are NULL.

Example:
246 of 347

CALL GREATEST(1, 2, 3);

IDENTITY

IDENTITY()

Returns the last inserted identity value for this session. This value changes
whenever a new sequence number was generated, even within a trigger or Java
function. See also SCOPE_IDENTITY. This method returns a long.

Example:

CALL IDENTITY();

IFNULL

IFNULL(aValue, bValue)

Returns the value of 'a' if it is not null, otherwise 'b'.

Example:

CALL IFNULL(NULL, '');

LEAST

LEAST(aValue, bValue [,...])

Returns the smallest value that is not NULL, or NULL if all values are NULL.

Example:

CALL LEAST(1, 2, 3);

LOCK_MODE

LOCK_MODE()

Returns the current lock mode. See SET LOCK_MODE. This method returns an int.

Example:

CALL LOCK_MODE();

247 of 347

LOCK_TIMEOUT

LOCK_TIMEOUT()

Returns the lock timeout of the current session (in milliseconds).

Example:

LOCK_TIMEOUT()

LINK_SCHEMA

LINK_SCHEMA(targetSchemaString, driverString, urlString,
userString, passwordString, sourceSchemaString)

Creates table links for all tables in a schema. If tables with the same name
already exist, they are dropped first. The target schema is created automatically if
it does not yet exist. The driver name may be empty if the driver is already
loaded. The list of tables linked is returned in the form of a result set. Admin
rights are required to execute this command.

Example:

CALL LINK_SCHEMA('TEST2', '', 'jdbc:h2:./test2', 'sa', 'sa', 'PUBLIC');

MEMORY_FREE

MEMORY_FREE()

Returns the free memory in KB (where 1024 bytes is a KB). This method returns
an int. The garbage is run before returning the value. Admin rights are required to
execute this command.

Example:

MEMORY_FREE()

MEMORY_USED

MEMORY_USED()

Returns the used memory in KB (where 1024 bytes is a KB). This method returns
an int. The garbage is run before returning the value. Admin rights are required to
execute this command.

248 of 347

Example:

MEMORY_USED()

NEXTVAL

NEXTVAL ([schemaNameString,] sequenceString)

Increments the sequence and returns its value. The current value of the sequence
and the last identity in the current session are updated with the generated value.
Used values are never re-used, even when the transaction is rolled back. This
method exists only for compatibility, it's recommended to use the standard NEXT
VALUE FOR sequenceName instead. If the schema name is not set, the current
schema is used. When sequence is not found, the uppercase name is also
checked. This method returns a long.

Example:

NEXTVAL('TEST_SEQ')

NULLIF

NULLIF(aValue, bValue)

Returns NULL if 'a' is equals to 'b', otherwise 'a'.

Example:

NULLIF(A, B)

NVL2

NVL2(testValue, aValue, bValue)

If the test value is null, then 'b' is returned. Otherwise, 'a' is returned. The data
type of the returned value is the data type of 'a' if this is a text type.

Example:

NVL2(X, 'not null', 'null')

249 of 347

READONLY

READONLY()

Returns true if the database is read-only.

Example:

READONLY()

ROWNUM

ROWNUM()

Returns the number of the current row. This method returns a long value. It is
supported for SELECT statements, as well as for DELETE and UPDATE. The first
row has the row number 1, and is calculated before ordering and grouping the
result set, but after evaluating index conditions (even when the index conditions
are specified in an outer query). Use the ROW_NUMBER() OVER () function to get
row numbers after grouping or in specified order.

Example:

SELECT ROWNUM(), * FROM TEST;
SELECT ROWNUM(), * FROM (SELECT * FROM TEST ORDER BY NAME);
SELECT ID FROM (SELECT T.*, ROWNUM AS R FROM TEST T) WHERE R
BETWEEN 2 AND 3;

SCOPE_IDENTITY

SCOPE_IDENTITY()

Returns the last inserted identity value for this session for the current scope (the
current statement). Changes within triggers and Java functions are ignored. See
also IDENTITY(). This method returns a long.

Example:

CALL SCOPE_IDENTITY();

SESSION_ID

SESSION_ID()

250 of 347

Returns the unique session id number for the current database connection. This id
stays the same while the connection is open. This method returns an int. The
database engine may re-use a session id after the connection is closed.

Example:

CALL SESSION_ID()

SET

SET(@variableName, value)

Updates a variable with the given value. The new value is returned. When used in
a query, the value is updated in the order the rows are read. When used in a
subquery, not all rows might be read depending on the query plan. This can be
used to implement running totals / cumulative sums.

Example:

SELECT X, SET(@I, IFNULL(@I, 0)+X) RUNNING_TOTAL FROM
SYSTEM_RANGE(1, 10)

TABLE

{ TABLE | TABLE_DISTINCT }
({ name dataType = array|rowValueExpression } [,...])

Returns the result set. TABLE_DISTINCT removes duplicate rows.

Example:

SELECT * FROM TABLE(VALUE INT = ARRAY[1, 2]);
SELECT * FROM TABLE(ID INT=(1, 2), NAME VARCHAR=('Hello', 'World'));

TRANSACTION_ID

TRANSACTION_ID()

Returns the current transaction id for this session. This method returns NULL if
there is no uncommitted change, or if the database is not persisted. Otherwise a
value of the following form is returned: logFileId-position-sessionId. This method
returns a string. The value is unique across database restarts (values are not re-
used).

251 of 347

Example:

CALL TRANSACTION_ID()

TRUNCATE_VALUE

TRUNCATE_VALUE(value, precisionInt, forceBoolean)

Truncate a value to the required precision. If force flag is set to FALSE fixed
precision values are not truncated. The method returns a value with the same
data type as the first parameter.

Example:

CALL TRUNCATE_VALUE(X, 10, TRUE);

UNNEST

UNNEST(array, [,...]) [WITH ORDINALITY]

Returns the result set. Number of columns is equal to number of arguments, plus
one additional column with row number if WITH ORDINALITY is specified.
Number of rows is equal to length of longest specified array. If multiple
arguments are specified and they have different length, cells with missing values
will contain null values.

Example:

SELECT * FROM UNNEST(ARRAY['a', 'b', 'c']);

USER

{ USER | CURRENT_USER } ()

Returns the name of the current user of this session.

Example:

CURRENT_USER()

H2VERSION

H2VERSION()

252 of 347

Returns the H2 version as a String.

Example:

H2VERSION()

JSON Functions

JSON_OBJECT

JSON_OBJECT(
[{[KEY] string VALUE expression} | {string : expression} [,...]]
[{ NULL | ABSENT } ON NULL]
[{ WITH | WITHOUT } UNIQUE KEYS]
)

Returns a JSON object constructed from the specified properties. If ABSENT ON
NULL is specified properties with NULL value are not included in the object. If
WITH UNIQUE KEYS is specified the constructed object is checked for uniqueness
of keys, nested objects, if any, are checked too.

Example:

JSON_OBJECT('id': 100, 'name': 'Joe', 'groups': '[2,5]' FORMAT JSON);

JSON_ARRAY

JSON_ARRAY(
[expression [,...]]|{(query) [FORMAT JSON]}
[{ NULL | ABSENT } ON NULL]
)

Returns a JSON array constructed from the specified values or from the specified
single-column subquery. If NULL ON NULL is specified NULL values are included in
the array.

Example:

JSON_ARRAY(10, 15, 20);
JSON_ARRAY(JSON_DATA_A FORMAT JSON, JSON_DATA_B FORMAT JSON);
JSON_ARRAY((SELECT J FROM PROPS) FORMAT JSON);

253 of 347

Aggregate Functions

Index

General Aggregate Functions

AVG
MAX
MIN
SUM
EVERY
ANY
COUNT
STDDEV_POP
STDDEV_SAMP
VAR_POP
VAR_SAMP
BIT_AND
BIT_OR
SELECTIVITY
ENVELOPE

Ordered Aggregate Functions

LISTAGG
ARRAY_AGG

Hypothetical Set Functions

RANK aggregate
DENSE_RANK aggregate
PERCENT_RANK aggregate
CUME_DIST aggregate

Inverse Distribution Functions

PERCENTILE_CONT
PERCENTILE_DISC
MEDIAN
MODE

254 of 347

JSON Aggregate Functions

JSON_OBJECTAGG
JSON_ARRAYAGG

General Aggregate Functions

AVG

AVG ([DISTINCT|ALL] { numeric })
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The average (mean) value. If no rows are selected, the result is NULL. Aggregates
are only allowed in select statements. The returned value is of the same data type
as the parameter.

Example:

AVG(X)

MAX

MAX(value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The highest value. If no rows are selected, the result is NULL. Aggregates are
only allowed in select statements. The returned value is of the same data type as
the parameter.

Example:

MAX(NAME)

MIN

MIN(value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The lowest value. If no rows are selected, the result is NULL. Aggregates are only
allowed in select statements. The returned value is of the same data type as the
parameter.

Example:

255 of 347

MIN(NAME)

SUM

SUM([DISTINCT|ALL] { numeric })
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The sum of all values. If no rows are selected, the result is NULL. Aggregates are
only allowed in select statements. The data type of the returned value depends on
the parameter data type like this: BOOLEAN, TINYINT, SMALLINT, INT ->
BIGINT, BIGINT -> DECIMAL, REAL -> DOUBLE

Example:

SUM(X)

EVERY

{EVERY|BOOL_AND}(boolean)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns true if all expressions are true. If no rows are selected, the result is NULL.
Aggregates are only allowed in select statements.

Example:

EVERY(ID>10)

ANY

{ANY|SOME|BOOL_OR}(boolean)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns true if any expression is true. If no rows are selected, the result is NULL.
Aggregates are only allowed in select statements.

Note that if ANY or SOME aggregate function is placed on the right side of
comparison operation and argument of this function is a subquery additional
parentheses around aggregate function are required, otherwise it will be parsed
as quantified comparison predicate.

Example:

256 of 347

ANY(NAME LIKE 'W%')
A = (ANY((SELECT B FROM T)))

COUNT

COUNT({ * | { [DISTINCT|ALL] expression } })
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The count of all row, or of the non-null values. This method returns a long. If no
rows are selected, the result is 0. Aggregates are only allowed in select
statements.

Example:

COUNT(*)

STDDEV_POP

STDDEV_POP([DISTINCT|ALL] numeric)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The population standard deviation. This method returns a double. If no rows are
selected, the result is NULL. Aggregates are only allowed in select statements.

Example:

STDDEV_POP(X)

STDDEV_SAMP

STDDEV_SAMP([DISTINCT|ALL] numeric)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The sample standard deviation. This method returns a double. If no rows are
selected, the result is NULL. Aggregates are only allowed in select statements.

Example:

STDDEV(X)

VAR_POP

VAR_POP([DISTINCT|ALL] numeric)

257 of 347

[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The population variance (square of the population standard deviation). This
method returns a double. If no rows are selected, the result is NULL. Aggregates
are only allowed in select statements.

Example:

VAR_POP(X)

VAR_SAMP

VAR_SAMP([DISTINCT|ALL] numeric)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The sample variance (square of the sample standard deviation). This method
returns a double. If no rows are selected, the result is NULL. Aggregates are only
allowed in select statements.

Example:

VAR_SAMP(X)

BIT_AND

BIT_AND(expression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The bitwise AND of all non-null values. If no rows are selected, the result is NULL.
Aggregates are only allowed in select statements.

Example:

BIT_AND(ID)

BIT_OR

BIT_OR(expression)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The bitwise OR of all non-null values. If no rows are selected, the result is NULL.
Aggregates are only allowed in select statements.

Example:

258 of 347

BIT_OR(ID)

SELECTIVITY

SELECTIVITY(value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Estimates the selectivity (0-100) of a value. The value is defined as (100 *
distinctCount / rowCount). The selectivity of 0 rows is 0 (unknown). Up to 10000
values are kept in memory. Aggregates are only allowed in select statements.

Example:

SELECT SELECTIVITY(FIRSTNAME), SELECTIVITY(NAME) FROM TEST WHERE
ROWNUM()<20000

ENVELOPE

ENVELOPE(value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the minimum bounding box that encloses all specified GEOMETRY values.
Only 2D coordinate plane is supported. NULL values are ignored in the calculation.
If no rows are selected, the result is NULL. Aggregates are only allowed in select
statements.

Example:

ENVELOPE(X)

Ordered Aggregate Functions

LISTAGG

{ LISTAGG ([DISTINCT|ALL] string [, separatorString] [ON OVERFLOW
ERROR])
withinGroupSpecification }
| { GROUP_CONCAT ([DISTINCT|ALL] string
[ORDER BY { expression [ASC | DESC] } [,...]]
[SEPARATOR separatorString]) }
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

259 of 347

Concatenates strings with a separator. Separator must be the same for all rows in
the same group. The default separator is a ',' (without space). This method
returns a string. NULL values are ignored in the calculation, COALESCE can be
used to replace them. If no rows are selected, the result is NULL. Aggregates are
only allowed in select statements.

Example:

LISTAGG(NAME, ', ') WITHIN GROUP (ORDER BY ID)
LISTAGG(COALESCE(NAME, 'null'), ', ') WITHIN GROUP (ORDER BY ID)
LISTAGG(ID, ', ') WITHIN GROUP (ORDER BY ID) OVER (ORDER BY ID)

ARRAY_AGG

ARRAY_AGG ([DISTINCT|ALL] value
[ORDER BY { expression [ASC | DESC] } [,...]])
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Aggregate the value into an array. This method returns an array. NULL values are
included in the array, FILTER clause can be used to exclude them. If no rows are
selected, the result is NULL. If ORDER BY is not specified order of values is not
determined. When this aggregate is used with OVER clause that contains ORDER
BY subclause it does not enforce exact order of values. This aggregate needs
additional own ORDER BY clause to make it deterministic. Aggregates are only
allowed in select statements.

Example:

ARRAY_AGG(NAME ORDER BY ID)
ARRAY_AGG(NAME ORDER BY ID) FILTER (WHERE NAME IS NOT NULL)
ARRAY_AGG(ID ORDER BY ID) OVER (ORDER BY ID)

Hypothetical Set Functions

RANK aggregate

RANK(value [,...])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the rank of the hypothetical row in specified collection of rows. The rank
of a row is the number of rows that precede this row plus 1. If two or more rows

260 of 347

have the same values in ORDER BY columns, these rows get the same rank from
the first row with the same values. It means that gaps in ranks are possible.

See RANK for a window function with the same name.

Example:

SELECT RANK(5) WITHIN GROUP (ORDER BY V) FROM TEST;

DENSE_RANK aggregate

DENSE_RANK(value [,...])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the dense rank of the hypothetical row in specified collection of rows. The
rank of a row is the number of groups of rows with the same values in ORDER BY
columns that precede group with this row plus 1. If two or more rows have the
same values in ORDER BY columns, these rows get the same rank. Gaps in ranks
are not possible.

See DENSE_RANK for a window function with the same name.

Example:

SELECT DENSE_RANK(5) WITHIN GROUP (ORDER BY V) FROM TEST;

PERCENT_RANK aggregate

PERCENT_RANK(value [,...])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the relative rank of the hypothetical row in specified collection of rows.
The relative rank is calculated as (RANK - 1) / (NR - 1), where RANK is a rank of
the row and NR is a total number of rows in the collection including hypothetical
row.

See PERCENT_RANK for a window function with the same name.

Example:

SELECT PERCENT_RANK(5) WITHIN GROUP (ORDER BY V) FROM TEST;

261 of 347

CUME_DIST aggregate

CUME_DIST(value [,...])
withinGroupSpecification
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the relative rank of the hypothetical row in specified collection of rows.
The relative rank is calculated as NP / NR where NP is a number of rows that
precede the current row or have the same values in ORDER BY columns and NR is
a total number of rows in the collection including hypothetical row.

See CUME_DIST for a window function with the same name.

Example:

SELECT CUME_DIST(5) WITHIN GROUP (ORDER BY V) FROM TEST;

Inverse Distribution Functions

PERCENTILE_CONT

PERCENTILE_CONT(numeric) WITHIN GROUP (ORDER BY value [ASC|DESC])
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Return percentile of values from the group with interpolation. Interpolation is only
supported for numeric, date-time, and interval data types. Argument must be
between 0 and 1 inclusive. Argument must be the same for all rows in the same
group. If argument is NULL, the result is NULL. NULL values are ignored in the
calculation. If no rows are selected, the result is NULL. Aggregates are only
allowed in select statements.

Example:

PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY V)

PERCENTILE_DISC

PERCENTILE_DISC(numeric) WITHIN GROUP (ORDER BY value [ASC|DESC])
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Return percentile of values from the group. Interpolation is not performed.
Argument must be between 0 and 1 inclusive. Argument must be the same for all
rows in the same group. If argument is NULL, the result is NULL. NULL values are

262 of 347

ignored in the calculation. If no rows are selected, the result is NULL. Aggregates
are only allowed in select statements.

Example:

PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY V)

MEDIAN

MEDIAN([DISTINCT|ALL] value)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

The value separating the higher half of a values from the lower half. Returns the
middle value or an interpolated value between two middle values if number of
values is even. Interpolation is only supported for numeric, date-time, and interval
data types. NULL values are ignored in the calculation. If no rows are selected,
the result is NULL. Aggregates are only allowed in select statements.

Example:

MEDIAN(X)

MODE

{ MODE(value) [ORDER BY value [ASC | DESC]] }
| { MODE() WITHIN GROUP (ORDER BY expression [ASC | DESC]) }
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Returns the value that occurs with the greatest frequency. If there are multiple
values with the same frequency only one value will be returned. In this situation
value will be chosen based on optional ORDER BY clause that should specify
exactly the same expression as argument of this function. Use ascending order to
get smallest value or descending order to get largest value from multiple values
with the same frequency. If this clause is not specified the exact chosen value is
not determined in this situation. NULL values are ignored in the calculation. If no
rows are selected, the result is NULL. Aggregates are only allowed in select
statements.

Example:

MODE(X)
MODE(X ORDER BY X)
MODE() WITHIN GROUP (ORDER BY X)

263 of 347

JSON Aggregate Functions

JSON_OBJECTAGG

JSON_OBJECTAGG(
{[KEY] string VALUE value} | {string : value}
[{ NULL | ABSENT } ON NULL]
[{ WITH | WITHOUT } UNIQUE KEYS]
)
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Aggregates the keys with values into a JSON object. If ABSENT ON NULL is
specified properties with NULL value are not included in the object. If WITH
UNIQUE KEYS is specified the constructed object is checked for uniqueness of
keys, nested objects, if any, are checked too. If no values are selected, the result
is SQL NULL value.

Example:

JSON_OBJECTAGG(NAME: VAL);
JSON_OBJECTAGG(KEY NAME VALUE VAL);

JSON_ARRAYAGG

JSON_ARRAYAGG(expression [{ NULL | ABSENT } ON NULL])
[FILTER (WHERE expression)] [OVER windowNameOrSpecification]

Aggregates the values into a JSON array. If NULL ON NULL is specified NULL
values are included in the array. If no values are selected, the result is SQL NULL
value.

Example:

JSON_ARRAYAGG(NUMBER)

264 of 347

Window Functions

Index

Row Number Function

ROW_NUMBER

Rank Functions

RANK
DENSE_RANK
PERCENT_RANK
CUME_DIST

Lead or Lag Functions

LEAD
LAG

Nth Value Functions

FIRST_VALUE
LAST_VALUE
NTH_VALUE

Other Window Functions

NTILE
RATIO_TO_REPORT

Row Number Function

ROW_NUMBER

ROW_NUMBER() OVER windowNameOrSpecification

Returns the number of the current row starting with 1. Window frame clause is
not allowed for this function.

265 of 347

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT ROW_NUMBER() OVER (), * FROM TEST;
SELECT ROW_NUMBER() OVER (ORDER BY ID), * FROM TEST;
SELECT ROW_NUMBER() OVER (PARTITION BY CATEGORY ORDER BY ID), *
FROM TEST;

Rank Functions

RANK

RANK() OVER windowNameOrSpecification

Returns the rank of the current row. The rank of a row is the number of rows that
precede this row plus 1. If two or more rows have the same values in ORDER BY
columns, these rows get the same rank from the first row with the same values. It
means that gaps in ranks are possible. This function requires window order
clause. Window frame clause is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

See RANK aggregate for a hypothetical set function with the same name.

Example:

SELECT RANK() OVER (ORDER BY ID), * FROM TEST;
SELECT RANK() OVER (PARTITION BY CATEGORY ORDER BY ID), * FROM TEST;

DENSE_RANK

DENSE_RANK() OVER windowNameOrSpecification

Returns the dense rank of the current row. The rank of a row is the number of
groups of rows with the same values in ORDER BY columns that precede group
with this row plus 1. If two or more rows have the same values in ORDER BY
columns, these rows get the same rank. Gaps in ranks are not possible. This
function requires window order clause. Window frame clause is not allowed for
this function.

Window functions in H2 may require a lot of memory for large queries.

See DENSE_RANK aggregate for a hypothetical set function with the same name.

266 of 347

Example:

SELECT DENSE_RANK() OVER (ORDER BY ID), * FROM TEST;
SELECT DENSE_RANK() OVER (PARTITION BY CATEGORY ORDER BY ID), *
FROM TEST;

PERCENT_RANK

PERCENT_RANK() OVER windowNameOrSpecification

Returns the relative rank of the current row. The relative rank is calculated as
(RANK - 1) / (NR - 1), where RANK is a rank of the row and NR is a number of
rows in window partition with this row. Note that result is always 0 if window
order clause is not specified. Window frame clause is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

See PERCENT_RANK aggregate for a hypothetical set function with the same
name.

Example:

SELECT PERCENT_RANK() OVER (ORDER BY ID), * FROM TEST;
SELECT PERCENT_RANK() OVER (PARTITION BY CATEGORY ORDER BY ID), *
FROM TEST;

CUME_DIST

CUME_DIST() OVER windowNameOrSpecification

Returns the relative rank of the current row. The relative rank is calculated as
NP / NR where NP is a number of rows that precede the current row or have the
same values in ORDER BY columns and NR is a number of rows in window
partition with this row. Note that result is always 1 if window order clause is not
specified. Window frame clause is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

See CUME_DIST aggregate for a hypothetical set function with the same name.

Example:

SELECT CUME_DIST() OVER (ORDER BY ID), * FROM TEST;
SELECT CUME_DIST() OVER (PARTITION BY CATEGORY ORDER BY ID), * FROM
TEST;

267 of 347

Lead or Lag Functions

LEAD

LEAD(value [, offsetInt [, defaultValue]]) [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the value in a next row with specified offset relative to the current row.
Offset must be non-negative. If IGNORE NULLS is specified rows with null values
in selected expression are skipped. If number of considered rows is less than
specified relative number this function returns NULL or the specified default value,
if any. If offset is 0 the value from the current row is returned unconditionally.
This function requires window order clause. Window frame clause is not allowed
for this function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT LEAD(X) OVER (ORDER BY ID), * FROM TEST;
SELECT LEAD(X, 2, 0) IGNORE NULLS OVER (
 PARTITION BY CATEGORY ORDER BY ID
), * FROM TEST;

LAG

LAG(value [, offsetInt [, defaultValue]]) [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the value in a previous row with specified offset relative to the current
row. Offset must be non-negative. If IGNORE NULLS is specified rows with null
values in selected expression are skipped. If number of considered rows is less
than specified relative number this function returns NULL or the specified default
value, if any. If offset is 0 the value from the current row is returned
unconditionally. This function requires window order clause. Window frame clause
is not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT LAG(X) OVER (ORDER BY ID), * FROM TEST;
SELECT LAG(X, 2, 0) IGNORE NULLS OVER (

268 of 347

 PARTITION BY CATEGORY ORDER BY ID
), * FROM TEST;

Nth Value Functions

FIRST_VALUE

FIRST_VALUE(value) [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the first value in a window. If IGNORE NULLS is specified null values are
skipped and the function returns first non-null value, if any.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT FIRST_VALUE(X) OVER (ORDER BY ID), * FROM TEST;
SELECT FIRST_VALUE(X) IGNORE NULLS OVER (PARTITION BY CATEGORY
ORDER BY ID), * FROM TEST;

LAST_VALUE

LAST_VALUE(value) [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the last value in a window. If IGNORE NULLS is specified null values are
skipped and the function returns last non-null value before them, if any; if there is
no non-null value it returns NULL. Note that the last value is actually a value in
the current group of rows if window order clause is specified and window frame
clause is not specified.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT LAST_VALUE(X) OVER (ORDER BY ID), * FROM TEST;
SELECT LAST_VALUE(X) IGNORE NULLS OVER (
 PARTITION BY CATEGORY ORDER BY ID
 RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
), * FROM TEST;

269 of 347

NTH_VALUE

NTH_VALUE(value, nInt) [FROM {FIRST|LAST}] [{RESPECT|IGNORE} NULLS]
OVER windowNameOrSpecification

Returns the value in a row with a specified relative number in a window. Relative
row number must be positive. If FROM LAST is specified rows a counted
backwards from the last row. If IGNORE NULLS is specified rows with null values
in selected expression are skipped. If number of considered rows is less than
specified relative number this function returns NULL. Note that the last row is
actually a last row in the current group of rows if window order clause is specified
and window frame clause is not specified.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT NTH_VALUE(X) OVER (ORDER BY ID), * FROM TEST;
SELECT NTH_VALUE(X) IGNORE NULLS OVER (
 PARTITION BY CATEGORY ORDER BY ID
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
), * FROM TEST;

Other Window Functions

NTILE

NTILE(long) OVER windowNameOrSpecification

Distributes the rows into a specified number of groups. Number of groups should
be a positive long value. NTILE returns the 1-based number of the group to which
the current row belongs. First groups will have more rows if number of rows is not
divisible by number of groups. For example, if 5 rows are distributed into 2 groups
this function returns 1 for the first 3 row and 2 for the last 2 rows. This function
requires window order clause. Window frame clause is not allowed for this
function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT NTILE(10) OVER (ORDER BY ID), * FROM TEST;
SELECT NTILE(5) OVER (PARTITION BY CATEGORY ORDER BY ID), * FROM
TEST;

270 of 347

RATIO_TO_REPORT

RATIO_TO_REPORT(value)
OVER windowNameOrSpecification

Returns the ratio of a value to the sum of all values. If argument is NULL or sum
of all values is 0, then the value of function is NULL. Window ordering and
window frame clauses are not allowed for this function.

Window functions in H2 may require a lot of memory for large queries.

Example:

SELECT X, RATIO_TO_REPORT(X) OVER (PARTITION BY CATEGORY), CATEGORY
FROM TEST;

271 of 347

Data Types

Index

INT
BOOLEAN
TINYINT
SMALLINT
BIGINT
IDENTITY
DECIMAL
DOUBLE
REAL
TIME
TIME WITH TIME ZONE
DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
BINARY
OTHER
VARCHAR
VARCHAR_IGNORECASE
CHAR
BLOB
CLOB
UUID
ARRAY
ENUM
GEOMETRY
JSON
INTERVAL

INT

INT | INTEGER | MEDIUMINT | INT4 | SIGNED

Possible values: -2147483648 to 2147483647.

See also integer literal grammar. Mapped to java.lang.Integer.

Example:

INT
272 of 347

BOOLEAN

BOOLEAN | BIT | BOOL

Possible values: TRUE, FALSE, and UNKNOWN (NULL).

See also boolean literal grammar. Mapped to java.lang.Boolean.

Example:

BOOLEAN

TINYINT

TINYINT

Possible values are: -128 to 127.

See also integer literal grammar. Mapped to java.lang.Byte.

Example:

TINYINT

SMALLINT

SMALLINT | INT2 | YEAR

Possible values: -32768 to 32767.

See also integer literal grammar. Mapped to java.lang.Short.

Example:

SMALLINT

BIGINT

BIGINT | INT8

Possible values: -9223372036854775808 to 9223372036854775807.

See also long literal grammar. Mapped to java.lang.Long.

273 of 347

Example:

BIGINT

IDENTITY

IDENTITY

Auto-Increment value. Possible values: -9223372036854775808 to
9223372036854775807. Used values are never re-used, even when the
transaction is rolled back.

See also long literal grammar. Mapped to java.lang.Long.

Example:

IDENTITY

DECIMAL

{ DECIMAL | NUMBER | DEC | NUMERIC } (precisionInt [, scaleInt])

Data type with fixed precision and scale. This data type is recommended for
storing currency values.

See also numeric literal grammar. Mapped to java.math.BigDecimal.

Example:

DECIMAL(20, 2)

DOUBLE

{ DOUBLE [PRECISION] | FLOAT [(precisionInt)] | FLOAT8 }

A floating point number. Should not be used to represent currency values,
because of rounding problems. If precision value is specified for FLOAT type
name, it should be from 25 to 53.

See also numeric literal grammar. Mapped to java.lang.Double.

Example:

DOUBLE

274 of 347

REAL

{ REAL | FLOAT (precisionInt) | FLOAT4 }

A single precision floating point number. Should not be used to represent currency
values, because of rounding problems. Precision value for FLOAT type name
should be from 0 to 24.

See also numeric literal grammar. Mapped to java.lang.Float.

Example:

REAL

TIME

TIME [(precisionInt)] [WITHOUT TIME ZONE]

The time data type. The format is hh:mm:ss[.nnnnnnnnn]. If fractional seconds
precision is specified it should be from 0 to 9, 0 is default.

See also time literal grammar. Mapped to java.sql.Time. java.time.LocalTime is
also supported and recommended on Java 8 and later versions. Use
java.time.LocalTime or String instead of java.sql.Time when non-zero precision is
needed. Cast from higher fractional seconds precision to lower fractional seconds
precision performs round half up; if result of rounding is higher than maximum
supported value 23:59:59.999999999 the value is rounded down instead. The
CAST operation to TIMESTAMP and TIMESTAMP WITH TIME ZONE data types
uses the CURRENT_DATE for date fields, comparison operations with values of
these data types use the 1970-01-01 instead.

Example:

TIME
TIME(9)

TIME WITH TIME ZONE

TIME [(precisionInt)] WITH TIME ZONE

The time with time zone data type. If fractional seconds precision is specified it
should be from 0 to 9, 0 is default.

275 of 347

See also time with time zone literal grammar. Mapped to java.time.OffsetTime on
Java 8 and later versions. Cast from higher fractional seconds precision to lower
fractional seconds precision performs round half up; if result of rounding is higher
than maximum supported value 23:59:59.999999999 the value is rounded down
instead. The CAST operation to TIMESTAMP and TIMESTAMP WITH TIME ZONE
data types uses the CURRENT_DATE for date fields, comparison operations with
values of these data types use the 1970-01-01 instead.

Example:

TIME WITH TIME ZONE
TIME(9) WITH TIME ZONE

DATE

DATE

The date data type. The proleptic Gregorian calendar is used.

See also date literal grammar. Mapped to java.sql.Date, with the time set to
00:00:00 (or to the next possible time if midnight doesn't exist for the given date
and time zone due to a daylight saving change). java.time.LocalDate is also
supported and recommended on Java 8 and later versions.

If your time zone had LMT (local mean time) in the past and you use such old
dates (depends on the time zone, usually 100 or more years ago), don't use
java.sql.Date to read and write them.

If you deal with very old dates (before 1582-10-15) note that java.sql.Date uses a
mixed Julian/Gregorian calendar, java.util.GregorianCalendar can be configured to
proleptic Gregorian with setGregorianChange(new
java.util.Date(Long.MIN_VALUE)) and used to read or write fields of dates.

Example:

DATE

TIMESTAMP

{ TIMESTAMP [(precisionInt)] [WITHOUT TIME ZONE]
| DATETIME [(precisionInt)] | SMALLDATETIME }

276 of 347

The timestamp data type. The proleptic Gregorian calendar is used. If fractional
seconds precision is specified it should be from 0 to 9, 6 is default. Fractional
seconds precision of SMALLDATETIME is always 0 and cannot be specified.

This data type holds the local date and time without time zone information. It
cannot distinguish timestamps near transitions from DST to normal time. For
absolute timestamps use the TIMESTAMP WITH TIME ZONE data type instead.

See also timestamp literal grammar. Mapped to java.sql.Timestamp (java.util.Date
may be used too). java.time.LocalDateTime is also supported and recommended
on Java 8 and later versions.

If your time zone had LMT (local mean time) in the past and you use such old
dates (depends on the time zone, usually 100 or more years ago), don't use
java.sql.Timestamp and java.util.Date to read and write them.

If you deal with very old dates (before 1582-10-15) note that java.sql.Timestamp
and java.util.Date use a mixed Julian/Gregorian calendar,
java.util.GregorianCalendar can be configured to proleptic Gregorian with
setGregorianChange(new java.util.Date(Long.MIN_VALUE)) and used to read or
write fields of timestamps.

Cast from higher fractional seconds precision to lower fractional seconds precision
performs round half up.

Example:

TIMESTAMP
TIMESTAMP(9)

TIMESTAMP WITH TIME ZONE

TIMESTAMP [(precisionInt)] WITH TIME ZONE

The timestamp with time zone data type. The proleptic Gregorian calendar is
used. If fractional seconds precision is specified it should be from 0 to 9, 6 is
default.

See also timestamp with time zone literal grammar. Mapped to
org.h2.api.TimestampWithTimeZone by default and can be optionally mapped to
java.time.OffsetDateTime. java.time.ZonedDateTime and java.time.Instant are
also supported on Java 8 and later versions.

Values of this data type are compared by UTC values. It means that 2010-01-01
10:00:00+01 is greater than 2010-01-01 11:00:00+03.

277 of 347

Conversion to TIMESTAMP uses time zone offset to get UTC time and converts it
to local time using the system time zone. Conversion from TIMESTAMP does the
same operations in reverse and sets time zone offset to offset of the system time
zone. Cast from higher fractional seconds precision to lower fractional seconds
precision performs round half up.

Example:

TIMESTAMP WITH TIME ZONE
TIMESTAMP(9) WITH TIME ZONE

BINARY

{ BINARY | VARBINARY | BINARY VARYING
| LONGVARBINARY | RAW | BYTEA }
[(precisionInt)]

Represents a byte array. For very long arrays, use BLOB. The maximum size is 2
GB, but the whole object is kept in memory when using this data type. The
precision is a size constraint; only the actual data is persisted. For large text data
BLOB or CLOB should be used.

See also bytes literal grammar. Mapped to byte[].

Example:

BINARY(1000)

OTHER

OTHER

This type allows storing serialized Java objects. Internally, a byte array is used.
Serialization and deserialization is done on the client side only. Deserialization is
only done when getObject is called. Java operations cannot be executed inside
the database engine for security reasons. Use PreparedStatement.setObject to
store values.

Mapped to java.lang.Object (or any subclass).

Example:

OTHER

278 of 347

VARCHAR

{ VARCHAR | CHARACTER VARYING | LONGVARCHAR | VARCHAR2 | NVARCHAR
| NVARCHAR2 | VARCHAR_CASESENSITIVE} [(precisionInt)]

A Unicode String. Use two single quotes ('') to create a quote.

The maximum precision is Integer.MAX_VALUE. The precision is a size constraint;
only the actual data is persisted.

The whole text is loaded into memory when using this data type. For large text
data CLOB should be used; see there for details.

See also string literal grammar. Mapped to java.lang.String.

Example:

VARCHAR(255)

VARCHAR_IGNORECASE

VARCHAR_IGNORECASE [(precisionInt)]

Same as VARCHAR, but not case sensitive when comparing. Stored in mixed case.

The maximum precision is Integer.MAX_VALUE. The precision is a size constraint;
only the actual data is persisted.

The whole text is loaded into memory when using this data type. For large text
data CLOB should be used; see there for details.

See also string literal grammar. Mapped to java.lang.String.

Example:

VARCHAR_IGNORECASE

CHAR

{ CHAR | CHARACTER | NCHAR } [(precisionInt)]

A Unicode String. This type is supported for compatibility with other databases
and older applications. The difference to VARCHAR is that trailing spaces are
ignored and not persisted.

279 of 347

The maximum precision is Integer.MAX_VALUE. The precision is a size constraint;
only the actual data is persisted.

The whole text is kept in memory when using this data type. For large text data
CLOB should be used; see there for details.

See also string literal grammar. Mapped to java.lang.String.

Example:

CHAR(10)

BLOB

{ BLOB | BINARY LARGE OBJECT
| TINYBLOB | MEDIUMBLOB | LONGBLOB | IMAGE | OID }
[(precisionInt [K|M|G|T|P])]

Like BINARY, but intended for very large values such as files or images. Unlike
when using BINARY, large objects are not kept fully in-memory. Use
PreparedStatement.setBinaryStream to store values. See also CLOB and Advanced
/ Large Objects.

Mapped to java.sql.Blob (java.io.InputStream is also supported).

Example:

BLOB
BLOB(10K)

CLOB

{ CLOB | CHARACTER LARGE OBJECT
| TINYTEXT | TEXT | MEDIUMTEXT | LONGTEXT | NTEXT | NCLOB }
[(precisionInt [K|M|G|T|P] [CHARACTERS|OCTETS])]

CLOB is like VARCHAR, but intended for very large values. Unlike when using
VARCHAR, large CLOB objects are not kept fully in-memory; instead, they are
streamed. CLOB should be used for documents and texts with arbitrary size such
as XML or HTML documents, text files, or memo fields of unlimited size. Use
PreparedStatement.setCharacterStream to store values. See also Advanced /
Large Objects.

280 of 347

VARCHAR should be used for text with relatively short average size (for example
shorter than 200 characters). Short CLOB values are stored inline, but there is an
overhead compared to VARCHAR.

Precision, if any, should be specified in characters, CHARACTERS and OCTETS
units have no effect in H2.

Mapped to java.sql.Clob (java.io.Reader is also supported).

Example:

CLOB
CLOB(10K)

UUID

UUID

Universally unique identifier. This is a 128 bit value. To store values, use
PreparedStatement.setBytes, setString, or setObject(uuid) (where uuid is a
java.util.UUID). ResultSet.getObject will return a java.util.UUID.

Please note that using an index on randomly generated data will result on poor
performance once there are millions of rows in a table. The reason is that the
cache behavior is very bad with randomly distributed data. This is a problem for
any database system.

For details, see the documentation of java.util.UUID.

Example:

UUID

ARRAY

ARRAY ['[' maximumCardinalityInt ']']

An array of values. Maximum cardinality, if any, specifies maximum allowed
number of elements in the array.

See also array literal grammar. Mapped to java.lang.Object[] (arrays of any non-
primitive type are also supported).

281 of 347

Use PreparedStatement.setArray(..) or PreparedStatement.setObject(.., new
Object[] {..}) to store values, and ResultSet.getObject(..) or ResultSet.getArray(..)
to retrieve the values.

Example:

ARRAY
ARRAY[10]

ENUM

{ ENUM (string [, ...]) }

A type with enumerated values. Mapped to java.lang.Integer.

The first provided value is mapped to 0, the second mapped to 1, and so on.

Duplicate and empty values are not permitted.

Example:

ENUM('clubs', 'diamonds', 'hearts', 'spades')

GEOMETRY

GEOMETRY
[({ GEOMETRY |
{ POINT
| LINESTRING
| POLYGON
| MULTIPOINT
| MULTILINESTRING
| MULTIPOLYGON
| GEOMETRYCOLLECTION } [Z|M|ZM]}
[, sridInt])]

A spatial geometry type. If additional constraints are not specified this type
accepts all supported types of geometries. A constraint with required geometry
type and dimension system can be set by specifying name of the type and
dimension system. A whitespace between them is optional. 2D dimension system
does not have a name and assumed if only a geometry type name is specified.
POINT means 2D point, POINT Z or POINTZ means 3D point. GEOMETRY
constraint means no restrictions on type or dimension system of geometry. A

282 of 347

constraint with required spatial reference system identifier (SRID) can be set by
specifying this identifier.

Mapped to org.locationtech.jts.geom.Geometry if JTS library is in classpath and to
java.lang.String otherwise. May be represented in textual format using the WKT
(well-known text) or EWKT (extended well-known text) format. Values are stored
internally in EWKB (extended well-known binary) format. Only a subset of EWKB
and EWKT features is supported. Supported objects are POINT, LINESTRING,
POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, and
GEOMETRYCOLLECTION. Supported dimension systems are 2D (XY), Z (XYZ), M
(XYM), and ZM (XYZM). SRID (spatial reference system identifier) is supported.

Use a quoted string containing a WKT/EWKT formatted string or
PreparedStatement.setObject() to store values, and ResultSet.getObject(..) or
ResultSet.getString(..) to retrieve the values.

Example:

GEOMETRY
GEOMETRY(POINT)
GEOMETRY(POINT Z)
GEOMETRY(POINT Z, 4326)
GEOMETRY(GEOMETRY, 4326)

JSON

JSON

A RFC 8259-compliant JSON text.

See also json literal grammar. Mapped to byte[]. To set a JSON value with
java.lang.String in a PreparedStatement use a FORMAT JSON data format
(INSERT INTO TEST(ID, DATA) VALUES (?, ? FORMAT JSON)). Without the data
format VARCHAR values are converted to a JSON string values.

Order of object members is preserved as is. Duplicate object member names are
allowed.

Example:

JSON

283 of 347

INTERVAL

intervalYearType | intervalMonthType | intervalDayType
| intervalHourType| intervalMinuteType | intervalSecondType
| intervalYearToMonthType | intervalDayToHourType
| intervalDayToMinuteType | intervalDayToSecondType
| intervalHourToMinuteType | intervalHourToSecondType
| intervalMinuteToSecondType

Interval data type. There are two classes of intervals. Year-month intervals can
store years and months. Day-time intervals can store days, hours, minutes, and
seconds. Year-month intervals are comparable only with another year-month
intervals. Day-time intervals are comparable only with another day-time intervals.

Mapped to org.h2.api.Interval.

Example:

INTERVAL DAY TO SECOND

Interval Data Types

INTERVAL YEAR

INTERVAL YEAR [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is default.

See also year interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Period is also supported on Java 8 and later versions.

Example:

INTERVAL YEAR

INTERVAL MONTH

INTERVAL MONTH [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is default.

See also month interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Period is also supported on Java 8 and later versions.

284 of 347

Example:

INTERVAL MONTH

INTERVAL DAY

INTERVAL DAY [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is default.

See also day interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL DAY

INTERVAL HOUR

INTERVAL HOUR [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is default.

See also hour interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL HOUR

INTERVAL MINUTE

INTERVAL MINUTE [(precisionInt)]

Interval data type. If precision is specified it should be from 1 to 18, 2 is default.

See also minute interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL MINUTE

285 of 347

INTERVAL SECOND

INTERVAL SECOND [(precisionInt [, fractionalPrecisionInt])]

Interval data type. If precision is specified it should be from 1 to 18, 2 is default.
If fractional seconds precision is specified it should be from 0 to 9, 6 is default.

See also second interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL SECOND

INTERVAL YEAR TO MONTH

INTERVAL YEAR [(precisionInt)] TO MONTH

Interval data type. If leading field precision is specified it should be from 1 to 18,
2 is default.

See also year to month interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Period is also supported on Java 8 and later versions.

Example:

INTERVAL YEAR TO MONTH

INTERVAL DAY TO HOUR

INTERVAL DAY [(precisionInt)] TO HOUR

Interval data type. If leading field precision is specified it should be from 1 to 18,
2 is default.

See also day to hour interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL DAY TO HOUR

286 of 347

INTERVAL DAY TO MINUTE

INTERVAL DAY [(precisionInt)] TO MINUTE

Interval data type. If leading field precision is specified it should be from 1 to 18,
2 is default.

See also day to minute interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL DAY TO MINUTE

INTERVAL DAY TO SECOND

INTERVAL DAY [(precisionInt)] TO SECOND [(fractionalPrecisionInt)]

Interval data type. If leading field precision is specified it should be from 1 to 18,
2 is default. If fractional seconds precision is specified it should be from 0 to 9, 6
is default.

See also day to second interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL DAY TO SECOND

INTERVAL HOUR TO MINUTE

INTERVAL HOUR [(precisionInt)] TO MINUTE

Interval data type. If leading field precision is specified it should be from 1 to 18,
2 is default.

See also hour to minute interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL HOUR TO MINUTE

287 of 347

INTERVAL HOUR TO SECOND

INTERVAL HOUR [(precisionInt)] TO SECOND [(fractionalPrecisionInt)]

Interval data type. If leading field precision is specified it should be from 1 to 18,
2 is default. If fractional seconds precision is specified it should be from 0 to 9, 6
is default.

See also hour to second interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL HOUR TO SECOND

INTERVAL MINUTE TO SECOND

INTERVAL MINUTE [(precisionInt)] TO SECOND [(fractionalPrecisionInt)]

Interval data type. If leading field precision is specified it should be from 1 to 18,
2 is default. If fractional seconds precision is specified it should be from 0 to 9, 6
is default.

See also minute to second interval literal grammar. Mapped to org.h2.api.Interval.
java.time.Duration is also supported on Java 8 and later versions.

Example:

INTERVAL MINUTE TO SECOND

288 of 347

SQL Grammar

Index

Literals

Value
Array
Boolean
Bytes
Date
Date and time
Decimal
Dollar Quoted String
Hex Number
Int
JSON
Long
Null
Number
Numeric
String
Time
Time with time zone
Timestamp
Timestamp with time zone
Interval
INTERVAL YEAR
INTERVAL MONTH
INTERVAL DAY
INTERVAL HOUR
INTERVAL MINUTE
INTERVAL SECOND
INTERVAL YEAR TO MONTH
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL MINUTE TO SECOND

289 of 347

Datetime fields

Datetime field
Year field
Month field
Day of month field
Hour field
Minute field
Second field
Millisecond field
Microsecond field
Nanosecond field
Timezone hour field
Timezone minute field
Timezone second field
Day of week field
ISO week year field
ISO day of week field
Week of year field
ISO week of year field
Quarter field
Day of year field
Epoch field

Other Grammar

Alias
And Condition
Case
Case When
Cipher
Column Definition
Comments
Compare
Condition
Condition Right Hand Side
Constraint
Constraint Name Definition
Csv Options
Data Change Delta Table
Data Type
Digit
Expression
Factor
Grouping element

290 of 347

Hex
Index Column
Insert columns and source
Insert values
Join specification
Merge when clause
Merge when matched clause
Merge when not matched clause
Name
Operand
Order
Query
Quoted Name
Referential Constraint
Referential Action
Script Compression Encryption
Row value expression
Select Expression
Sequence value expression
Sequence options
Sequence option
Set clause list
Summand
Table Expression
Within group specification
Wildcard expression
Window name or specification
Window specification
Window frame
Window frame preceding
Window frame bound
Term
Time zone
Column

Literals

Value

string | dollarQuotedString | numeric | dateAndTime | boolean | bytes
| interval | array | json | null

A literal value of any data type, or null.

291 of 347

Example:

10

Array

ARRAY '[' [expression [,...]] ']'

An array of values.

Example:

ARRAY[1, 2]
ARRAY[1]
ARRAY[]

Boolean

TRUE | FALSE | UNKNOWN

A boolean value. UNKNOWN is a NULL value with the boolean data type.

Example:

TRUE

Bytes

X'hex' ['hex' [...]]

A binary value. The hex value is not case sensitive and may contain space
characters.

Example:

X''
X'01FF'
X'01 bc 2a'
X'01' '02'

Date

DATE '[-]yyyy-MM-dd'

292 of 347

A date literal.

Example:

DATE '2004-12-31'

Date and time

date | time | timeWithTimeZone | timestamp | timestampWithTimeZone

A literal value of any date-time data type.

Example:

TIMESTAMP '1999-01-31 10:00:00'

Decimal

[+ | -] { { number [. number] } | { . number } }
[E [+ | -] expNumber [...]]]

A decimal number with fixed precision and scale. Internally, java.lang.BigDecimal
is used. To ensure the floating point representation is used, use CAST(X AS
DOUBLE). There are some special decimal values: to represent positive infinity,
use POWER(0, -1); for negative infinity, use (-POWER(0, -1)); for -0.0, use (-
CAST(0 AS DOUBLE)); for NaN (not a number), use SQRT(-1).

Example:

SELECT -1600.05
SELECT CAST(0 AS DOUBLE)
SELECT -1.4e-10

Dollar Quoted String

$$anything$$

A string starts and ends with two dollar signs. Two dollar signs are not allowed
within the text. A whitespace is required before the first set of dollar signs. No
escaping is required within the text.

Example:

$$John's car$$

293 of 347

Hex Number

[+ | -] 0x { digit | a-f | A-F } [...]

A number written in hexadecimal notation.

Example:

0xff

Int

[+ | -] number

The maximum integer number is 2147483647, the minimum is -2147483648.

Example:

10

JSON

JSON { bytes | string }

A binary or character string with a RFC 8259-compliant JSON text and data
format. JSON text is parsed into internal representation. Order of object members
is preserved as is. Duplicate object member names are allowed.

Example:

JSON '{"id":10,"name":"What''s this?"}'
JSON '[1, ' '2]';
JSON X'7472' '7565'

Long

[+ | -] number

Long numbers are between -9223372036854775808 and 9223372036854775807.

Example:

100000

294 of 347

Null

NULL

NULL is a value without data type and means 'unknown value'.

Example:

NULL

Number

digit [...]

The maximum length of the number depends on the data type used.

Example:

100

Numeric

decimal | int | long | hexNumber

The data type of a numeric value is always the lowest possible for the given
value. If the number contains a dot this is decimal; otherwise it is int, long, or
decimal (depending on the value).

Example:

SELECT -1600.05
SELECT CAST(0 AS DOUBLE)
SELECT -1.4e-10

String

'anything' ['anything' [...]]

A string starts and ends with a single quote. Two single quotes can be used to
create a single quote inside a string.

Example:

295 of 347

'John''s car'
'A' 'B' 'C'

Time

TIME [WITHOUT TIME ZONE] 'hh:mm:ss[.nnnnnnnnn]'

A time literal. A value is between 0:00:00 and 23:59:59.999999999 and has
nanosecond resolution.

Example:

TIME '23:59:59'

Time with time zone

TIME WITH TIME ZONE 'hh:mm:ss[.nnnnnnnnn]{Z | { - | + }
timeZoneOffsetString}'

A time with time zone literal. A value is between 0:00:00 and
23:59:59.999999999 and has nanosecond resolution.

Example:

TIME WITH TIME ZONE '23:59:59+01'
TIME WITH TIME ZONE '10:15:30.334-03:30'
TIME WITH TIME ZONE '0:00:00Z'

Timestamp

TIMESTAMP [WITHOUT TIME ZONE] '[-]yyyy-MM-dd hh:mm:ss[.nnnnnnnnn]'

A timestamp literal.

Example:

TIMESTAMP '2005-12-31 23:59:59'

Timestamp with time zone

TIMESTAMP WITH TIME ZONE '[-]yyyy-MM-dd hh:mm:ss[.nnnnnnnnn]
[Z | { - | + } timeZoneOffsetString | timeZoneNameString]'

296 of 347

A timestamp with time zone literal. If name of time zone is specified it will be
converted to time zone offset.

Example:

TIMESTAMP WITH TIME ZONE '2005-12-31 23:59:59Z'
TIMESTAMP WITH TIME ZONE '2005-12-31 23:59:59-10:00'
TIMESTAMP WITH TIME ZONE '2005-12-31 23:59:59.123+05'
TIMESTAMP WITH TIME ZONE '2005-12-31 23:59:59.123456789 Europe/London'

Interval

intervalYear | intervalMonth | intervalDay | intervalHour | intervalMinute
| intervalSecond | intervalYearToMonth | intervalDayToHour
| intervalDayToMinute | intervalDayToSecond | intervalHourToMinute
| intervalHourToSecond | intervalMinuteToSecond

An interval literal.

Example:

INTERVAL '1-2' YEAR TO MONTH

INTERVAL YEAR

INTERVAL [-|+] '[-|+]yearInt' YEAR

An INTERVAL YEAR literal.

Example:

INTERVAL '10' YEAR

INTERVAL MONTH

INTERVAL [-|+] '[-|+]monthInt' MONTH

An INTERVAL MONTH literal.

Example:

INTERVAL '10' MONTH

297 of 347

INTERVAL DAY

INTERVAL [-|+] '[-|+]dayInt' DAY

An INTERVAL DAY literal.

Example:

INTERVAL '10' DAY

INTERVAL HOUR

INTERVAL [-|+] '[-|+]hourInt' HOUR

An INTERVAL HOUR literal.

Example:

INTERVAL '10' HOUR

INTERVAL MINUTE

INTERVAL [-|+] '[-|+]minuteInt' MINUTE

An INTERVAL MINUTE literal.

Example:

INTERVAL '10' MINUTE

INTERVAL SECOND

INTERVAL [-|+] '[-|+]secondInt[.nnnnnnnnn]' SECOND

An INTERVAL SECOND literal.

Example:

INTERVAL '10.123' SECOND

INTERVAL YEAR TO MONTH

INTERVAL [-|+] '[-|+]yearInt-monthInt' YEAR TO MONTH

298 of 347

An INTERVAL YEAR TO MONTH literal.

Example:

INTERVAL '1-6' YEAR TO MONTH

INTERVAL DAY TO HOUR

INTERVAL [-|+] '[-|+]dayInt hoursInt' DAY TO HOUR

An INTERVAL DAY TO HOUR literal.

Example:

INTERVAL '10 11' DAY TO HOUR

INTERVAL DAY TO MINUTE

INTERVAL [-|+] '[-|+]dayInt hh:mm' DAY TO MINUTE

An INTERVAL DAY TO MINUTE literal.

Example:

INTERVAL '10 11:12' DAY TO MINUTE

INTERVAL DAY TO SECOND

INTERVAL [-|+] '[-|+]dayInt hh:mm:ss[.nnnnnnnnn]' DAY TO SECOND

An INTERVAL DAY TO SECOND literal.

Example:

INTERVAL '10 11:12:13.123' DAY TO SECOND

INTERVAL HOUR TO MINUTE

INTERVAL [-|+] '[-|+]hh:mm' HOUR TO MINUTE

An INTERVAL HOUR TO MINUTE literal.

Example:

299 of 347

INTERVAL '10:11' HOUR TO MINUTE

INTERVAL HOUR TO SECOND

INTERVAL [-|+] '[-|+]hh:mm:ss[.nnnnnnnnn]' HOUR TO SECOND

An INTERVAL HOUR TO SECOND literal.

Example:

INTERVAL '10:11:12.123' HOUR TO SECOND

INTERVAL MINUTE TO SECOND

INTERVAL [-|+] '[-|+]mm:ss[.nnnnnnnnn]' MINUTE TO SECOND

An INTERVAL MINUTE TO SECOND literal.

Example:

INTERVAL '11:12.123' MINUTE TO SECOND

Datetime fields

Datetime field

yearField | monthField | dayOfMonthField
| hourField | minuteField | secondField
| millisecondField | microsecondField | nanosecondField
| timezoneHourField | timezoneMinuteField | timezoneSecondField
| dayOfWeekField | isoWeekYearField | isoDayOfWeekField
| weekOfYearField | isoWeekOfYearField
| quarterField | dayOfYearField | epochField

Fields for EXTRACT, DATEADD, and DATEDIFF functions.

Example:

YEAR

300 of 347

Year field

YEAR | YYYY | YY | SQL_TSI_YEAR

Year.

Example:

YEAR

Month field

MONTH | MM | M | SQL_TSI_MONTH

Month (1-12).

Example:

MONTH

Day of month field

DAY | DD | D | SQL_TSI_DAY

Day of month (1-31).

Example:

DAY

Hour field

HOUR | HH | SQL_TSI_HOUR

Hour (0-23).

Example:

HOUR

Minute field

MINUTE | MI | N | SQL_TSI_MINUTE

301 of 347

Minute (0-59).

Example:

MINUTE

Second field

SECOND | SS | S | SQL_TSI_SECOND

Second (0-59).

Example:

SECOND

Millisecond field

MILLISECOND | MS

Millisecond (0-999).

Example:

MILLISECOND

Microsecond field

MICROSECOND | MCS

Microsecond (0-999999).

Example:

MICROSECOND

Nanosecond field

NANOSECOND | NS

Nanosecond (0-999999999).

Example:

302 of 347

NANOSECOND

Timezone hour field

TIMEZONE_HOUR

Timezone hour (from -18 to +18).

Example:

TIMEZONE_HOUR

Timezone minute field

TIMEZONE_MINUTE

Timezone minute (from -59 to +59).

Example:

TIMEZONE_MINUTE

Timezone second field

TIMEZONE_SECOND

Timezone second (from -59 to +59). Local mean time (LMT) used in the past may
have offsets with seconds. Standard time doesn't use such offsets.

Example:

TIMEZONE_SECOND

Day of week field

DAY_OF_WEEK | DAYOFWEEK | DOW

Day of week (1-7). Sunday is 1.

Example:

DAY_OF_WEEK

303 of 347

ISO week year field

ISO_YEAR | ISOYEAR

Returns the ISO week year from a date/time value.

Example:

ISO_YEAR

ISO day of week field

ISO_DAY_OF_WEEK | ISODOW

ISO day of week (1-7). Monday is 1.

Example:

ISO_DAY_OF_WEEK

Week of year field

WEEK | WW | W | SQL_TSI_WEEK

Week of year (1-53). EXTRACT function uses local rules to get number of week in
year. DATEDIFF function uses Sunday as a first day of week.

Example:

WEEK

ISO week of year field

ISO_WEEK

ISO week of year (1-53). ISO definition is used when first week of year should
have at least four days and week is started with Monday.

Example:

ISO_WEEK

304 of 347

Quarter field

QUARTER

Quarter (1-4).

Example:

QUARTER

Day of year field

DAYOFYEAR | DAY_OF_YEAR | DOY | DY

Day of year (1-366).

Example:

DAYOFYEAR

Epoch field

EPOCH

For TIMESTAMP values number of seconds since 1970-01-01 00:00:00 in local
time zone. For TIMESTAMP WITH TIME ZONE values number of seconds since
1970-01-01 00:00:00 in UTC time zone. For DATE values number of seconds since
1970-01-01. For TIME values number of seconds since midnight.

Example:

EPOCH

Other Grammar

Alias

name

An alias is a name that is only valid in the context of the statement.

Example:

305 of 347

A

And Condition

condition [{ AND condition } [...]]

Value or condition.

Example:

ID=1 AND NAME='Hi'

Case

CASE expression { WHEN expression THEN expression } [...]
[ELSE expression] END

Returns the first expression where the value is equal to the test expression. If no
else part is specified, return NULL.

Example:

CASE CNT WHEN 0 THEN 'No' WHEN 1 THEN 'One' ELSE 'Some' END

Case When

CASE { WHEN expression THEN expression} [...]
[ELSE expression] END

Returns the first expression where the condition is true. If no else part is
specified, return NULL.

Example:

CASE WHEN CNT<10 THEN 'Low' ELSE 'High' END

Cipher

AES

Only the algorithm AES (AES-128) is supported currently.

Example:

306 of 347

AES

Column Definition

dataType [VISIBLE | INVISIBLE]
[{ DEFAULT expression
| AS computedColumnExpression
| GENERATED {ALWAYS | BY DEFAULT} AS IDENTITY [(sequenceOptions)]}]
[ON UPDATE expression] [[NOT] NULL]
[{ AUTO_INCREMENT | IDENTITY } [(startInt [, incrementInt])]]
[SELECTIVITY selectivityInt] [COMMENT expression]
[PRIMARY KEY [HASH] | UNIQUE] [CHECK condition]

Default expressions are used if no explicit value was used when adding a row.
The computed column expression is evaluated and assigned whenever the row
changes. On update column expression is used if row is updated, at least one
column have a new value that is different from its previous value and value for
this column is not set explicitly in update statement.

Identity, auto-increment, or generated as identity columns are columns with a
sequence as the default. The column declared as the identity columns with
IDENTITY data type or with IDENTITY () clause is implicitly the primary key
column of this table. AUTO_INCREMENT and GENERATED clauses do not create
the primary key constraint. GENERATED ALWAYS is accepted but treated in the
same way as GENERATED BY DEFAULT.

The invisible column will not be displayed as a result of SELECT * query.
Otherwise, it works as normal column.

The options PRIMARY KEY, UNIQUE, and CHECK are not supported for ALTER
statements.

Check constraints can reference columns of the table, and they can reference
objects that exist while the statement is executed. Conditions are only checked
when a row is added or modified in the table where the constraint exists.

Example:

CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255) DEFAULT '');
CREATE TABLE TEST(ID BIGINT IDENTITY);
CREATE TABLE TEST(QUANTITY INT, PRICE DECIMAL, AMOUNT DECIMAL AS
QUANTITY*PRICE);

307 of 347

Comments

-- anything | // anything | /* anything */

Comments can be used anywhere in a command and are ignored by the
database. Line comments end with a newline. Block comments cannot be nested,
but can be multiple lines long.

Example:

// This is a comment

Compare

<> | <= | >= | = | < | > | != | &&

Comparison operator. The operator != is the same as <>. The operator &&
means overlapping; it can only be used with geometry types.

Example:

<>

Condition

operand [conditionRightHandSide]
| NOT condition
| EXISTS (query)
| UNIQUE (query)
| INTERSECTS (operand, operand)

Boolean value or condition.

NOT condition negates the result of subcondition and returns TRUE, FALSE, or
UNKNOWN (NULL).

EXISTS predicate tests whether the result of the specified subquery is not empty
and returns TRUE or FALSE.

UNIQUE predicate tests absence of duplicate rows in the specified subquery and
returns TRUE or FALSE. Rows with NULL value in any column are ignored.

INTERSECTS checks whether 2D bounding boxes of specified geometries
intersects with each other and returns TRUE or FALSE.

308 of 347

Example:

ID<>2
NOT(A OR B)
EXISTS (SELECT NULL FROM TEST T WHERE T.GROUP_ID = P.ID)
UNIQUE (SELECT A, B FROM TEST T WHERE T.CATEGORY = CAT)
INTERSECTS(GEOM1, GEOM2)

Condition Right Hand Side

compare { { { ALL | ANY | SOME } (query) } | operand }
| IS [NOT] NULL
| IS [NOT] [DISTINCT FROM] operand
| IS [NOT] { TRUE | FALSE | UNKNOWN }
| IS [NOT] OF (dataType [,...])
| IS [NOT] JSON [VALUE | ARRAY | OBJECT | SCALAR]
 [[WITH | WITHOUT] UNIQUE [KEYS]]
| BETWEEN operand AND operand
| IN ({ query | expression [,...] })
| [NOT] [LIKE | ILIKE] operand [ESCAPE string]
| [NOT] REGEXP operand

The right hand side of a condition.

Quantified comparison predicate ALL returns TRUE if specified comparison
operation between left size of condition and each row from a subquery returns
TRUE, including case when there are no rows. ALL predicate returns FALSE if at
least one such comparison returns FALSE. Otherwise it returns NULL.

Quantified comparison predicates ANY and SOME return TRUE if specified
comparison operation between left size of condition and at least one row from a
subquery returns TRUE. ANY and SOME predicates return FALSE if all such
comparisons return FALSE. Otherwise it returns NULL. Note that these predicates
have priority over ANY and SOME aggregate functions with subquery on the right
side. Use parentheses around aggregate function.

The conditions IS [NOT] NULL check whether the specified value(s) are NULL
values. To test multiple values a row value must be specified. IS NULL returns
TRUE if and only if all values are NULL values; otherwise it returns FALSE. IS NOT
NULL returns TRUE if and only if all values are not NULL values; otherwise it
returns FALSE.

The conditions IS [NOT] DISTINCT FROM are null-safe, meaning NULL is
considered the same as NULL, and the condition never evaluates to NULL.

309 of 347

Boolean tests IS [NOT] { TRUE | FALSE | UNKNOWN } check whether the
specified value is (not) TRUE, FALSE, or UNKNOWN (NULL) and return TRUE or
FALSE.

The conditions IS [NOT] OF check whether the data type of the specified
operand is one of the specified data types. Some data types have multiple names,
these names are considered as equal here. Domains and their base data types are
currently not distinguished from each other. Precision and scale are also ignored.
If operand is NULL, the result is NULL.

The conditions IS [NOT] JSON check whether value of the specified string,
binary data, or a JSON is a valid JSON. If ARRAY, OBJECT, or SCALAR is specified,
only JSON items of the specified type are considered as valid. If WITH UNIQUE
[KEYS] is specified only JSON with unique keys is considered as valid. These
conditions aren't null-safe, they return NULL if operand is NULL.

When comparing with LIKE, the wildcards characters are _ (any one character)
and % (any characters). The database uses an index when comparing with LIKE
except if the operand starts with a wildcard. To search for the characters % and
_, the characters need to be escaped. The default escape character is \
(backslash). To select no escape character, use ESCAPE '' (empty string). At most
one escape character is allowed. Each character that follows the escape character
in the pattern needs to match exactly. Patterns that end with an escape character
are invalid and the expression returns NULL.

ILIKE does a case-insensitive compare.

When comparing with REGEXP, regular expression matching is used. See Java
Matcher.find for details.

Example:

VALUE > 10
A IS NULL
(A, B) IS NOT NULL
A IS NOT DISTINCT FROM B
T IS OF (DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE)
T IS JSON OBJECT WITH UNIQUE KEYS
LIKE 'Jo%'

Constraint

[constraintNameDefinition]
{ CHECK expression
| UNIQUE (columnName [,...])

310 of 347

| referentialConstraint
| PRIMARY KEY [HASH] (columnName [,...]) }

Defines a constraint. The check condition must evaluate to TRUE, FALSE or NULL.
TRUE and NULL mean the operation is to be permitted, and FALSE means the
operation is to be rejected. To prevent NULL in a column, use NOT NULL instead
of a check constraint.

Example:

PRIMARY KEY(ID, NAME)

Constraint Name Definition

CONSTRAINT [IF NOT EXISTS] newConstraintName

Defines a constraint name.

Example:

CONSTRAINT CONST_ID

Csv Options

charsetString [, fieldSepString [, fieldDelimString [, escString [, nullString]]]]]
| optionString

Optional parameters for CSVREAD and CSVWRITE. Instead of setting the options
one by one, all options can be combined into a space separated key-value pairs,
as follows: STRINGDECODE('charset=UTF-8 escape=\" fieldDelimiter=\"
fieldSeparator=, ' || 'lineComment=# lineSeparator=\n null= rowSeparator=').
The following options are supported:

caseSensitiveColumnNames (true or false; disabled by default),

charset (for example 'UTF-8'),

escape (the character that escapes the field delimiter),

fieldDelimiter (a double quote by default),

fieldSeparator (a comma by default),

lineComment (disabled by default),

311 of 347

lineSeparator (the line separator used for writing; ignored for reading),

null, Support reading existing CSV files that contain explicit null delimiters. Note
that an empty, unquoted values are also treated as null.

preserveWhitespace (true or false; disabled by default),

writeColumnHeader (true or false; enabled by default).

For a newline or other special character, use STRINGDECODE as in the example
above. A space needs to be escaped with a backslash ('\ '), and a backslash needs
to be escaped with another backslash ('\\'). All other characters are not to be
escaped, that means newline and tab characters are written as such.

Example:

CALL CSVWRITE('test2.csv', 'SELECT * FROM TEST', 'charset=UTF-8
fieldSeparator=|');

Data Change Delta Table

{ OLD | NEW | FINAL } TABLE
({ insert | update | delete | mergeInto | mergeUsing })

Executes the inner data change command and returns old, new, or final rows.

OLD is not allowed for INSERT command. It returns old rows.

NEW and FINAL are not allowed for DELETE command.

NEW returns new rows after evaluation of default expressions, but before
execution of triggers.

FINAL returns new rows after execution of triggers. If table or view has INSTEAD
OF triggers FINAL is not allowed.

Example:

SELECT ID FROM FINAL TABLE (INSERT INTO TEST (A, B) VALUES (1, 2))

Data Type

intType | booleanType | tinyintType | smallintType | bigintType | identityType
| decimalType | doubleType | realType | dateType | timeType
| timeWithTimeZoneType | timestampType | timestampWithTimeZoneType

312 of 347

| binaryType | otherType | varcharType | varcharIgnorecaseType | charType
| blobType | clobType | uuidType | arrayType | enumType | intervalType

A data type definition.

Example:

INT

Digit

0-9

A digit.

Example:

0

Expression

andCondition [{ OR andCondition } [...]]

Value or condition.

Example:

ID=1 OR NAME='Hi'

Factor

term [{ { * | / | % } term } [...]]

A value or a numeric factor.

Example:

ID * 10

Grouping element

expression | (expression [, ...]) | ()

313 of 347

A grouping element of GROUP BY clause.

Example:

A
(B, C)
()

Hex

[' ' [...]] { { digit | a-f | A-F } [' ' [...]] { digit | a-f | A-F } [' ' [...]] } [...]

The hexadecimal representation of a number or of bytes with optional space
characters. Two hexadecimal digit characters are one byte.

Example:

cafe
11 22 33
a b c d

Index Column

columnName [ASC | DESC] [NULLS { FIRST | LAST }]

Indexes this column in ascending or descending order. Usually it is not required to
specify the order; however doing so will speed up large queries that order the
column in the same way.

Example:

NAME

Insert columns and source

{ [(columnName [,...])]
{ insertValues | [DIRECT] [SORTED] query | DEFAULT VALUES } }
| { SET { columnName = { DEFAULT | expression } } [,...] }

Names of columns and their values for INSERT statement.

Example:

(ID, NAME) VALUES (1, 'Test')

314 of 347

Insert values

VALUES { DEFAULT|expression | [ROW] ({DEFAULT|expression} [,...]) }, [,...]

Values for INSERT statement.

Example:

VALUES (1, 'Test')

Join specification

ON expression | USING (columnName [,...])

Specifies a join condition or column names.

Example:

ON B.ID = A.PARENT_ID
USING (ID)

Merge when clause

mergeWhenMatchedClause|mergeWhenNotMatchedClause

WHEN MATCHED or WHEN NOT MATCHED clause for MERGE USING command.

Example:

WHEN MATCHED THEN DELETE

Merge when matched clause

WHEN MATCHED [AND expression] THEN
UPDATE SET setClauseList
| DELETE
| {UPDATE SET setClauseList [WHERE expression] DELETE [WHERE expression
]}

WHEN MATCHED clause for MERGE USING command.

If both UPDATE and DELETE are specified, DELETE can delete only rows that
were updated, WHERE condition in DELETE clause can be used to specify which
updated rows should be deleted. This condition checks values in updated row.

315 of 347

Such combination of UPDATE and DELETE clauses in single WHEN MATCHED
clause is not allowed when MERGE statement is included into data change delta
table.

Example:

WHEN MATCHED THEN UPDATE SET VALUE = S.VALUE
WHEN MATCHED THEN DELETE

Merge when not matched clause

WHEN NOT MATCHED [AND expression] THEN INSERT
insertColumnsAndSource

WHEN NOT MATCHED clause for MERGE USING command.

Example:

WHEN NOT MATCHED THEN INSERT (ID, NAME) VALUES (S.ID, S.NAME)

Name

{ { A-Z|_ } [{ A-Z|_|0-9 } [...]] } | quotedName

With default settings unquoted names are converted to upper case. There is no
maximum name length.

Identifiers in H2 are case sensitive by default. Because unquoted names are
converted to upper case, they can be written in any case anyway. When both
quoted and unquoted names are used for the same identifier the quoted names
must be written in upper case. Identifiers with lowercase characters can be
written only as a quoted name, they aren't accessible with unquoted names.

If DATABASE_TO_UPPER setting is set to FALSE the unquoted names aren't
converted to upper case.

If DATABASE_TO_LOWER setting is set to TRUE the unquoted names are
converted to lower case instead.

If CASE_INSENSITIVE_IDENTIFIERS setting is set to TRUE all identifiers are case
insensitive.

Example:

TEST

316 of 347

Operand

summand [{ || summand } [...]]

Performs the concatenation of character string, binary string, or array values. In
the default mode, the result is NULL if either parameter is NULL. In compatibility
modes result of string concatenation with NULL parameter can be different.

Example:

'Hi' || ' Eva'
X'AB' || X'CD'
ARRAY[1, 2] || 3
1 || ARRAY[2, 3]
ARRAY[1, 2] || ARRAY[3, 4]

Order

{ int | expression } [ASC | DESC] [NULLS { FIRST | LAST }]

Sorts the result by the given column number, or by an expression. If the
expression is a single parameter, then the value is interpreted as a column
number. Negative column numbers reverse the sort order.

Example:

NAME DESC NULLS LAST

Query

select | explicitTable | tableValue

A query, such as SELECT, explicit table, or table value.

Example:

SELECT ID FROM TEST;
TABLE TEST;
VALUES (1, 2), (3, 4);

Quoted Name

"anything"

317 of 347

Case of characters in quoted names is preserved as is. Such names can contain
spaces. There is no maximum name length. Two double quotes can be used to
create a single double quote inside an identifier. With default settings identifiers in
H2 are case sensitive.

Example:

"FirstName"

Referential Constraint

FOREIGN KEY (columnName [,...])
REFERENCES [refTableName] [(refColumnName [,...])]
[ON DELETE referentialAction] [ON UPDATE referentialAction]

Defines a referential constraint. If the table name is not specified, then the same
table is referenced. RESTRICT is the default action. If the referenced columns are
not specified, then the primary key columns are used. The required indexes are
automatically created if required. Some tables may not be referenced, such as
metadata tables.

Example:

FOREIGN KEY(ID) REFERENCES TEST(ID)

Referential Action

CASCADE | RESTRICT | NO ACTION | SET { DEFAULT | NULL }

The action CASCADE will cause conflicting rows in the referencing (child) table to
be deleted or updated. RESTRICT is the default action. As this database does not
support deferred checking, RESTRICT and NO ACTION will both throw an
exception if the constraint is violated. The action SET DEFAULT will set the
column in the referencing (child) table to the default value, while SET NULL will
set it to NULL.

Example:

FOREIGN KEY(ID) REFERENCES TEST(ID) ON UPDATE CASCADE

Script Compression Encryption

[COMPRESSION { DEFLATE | LZF | ZIP | GZIP }]
[CIPHER cipher PASSWORD string]

318 of 347

The compression and encryption algorithm to use for script files. When using
encryption, only DEFLATE and LZF are supported. LZF is faster but uses more
space.

Example:

COMPRESSION LZF

Row value expression

ROW (expression, [,...])
| ([expression, expression [,...]])
| expression

A row value expression.

Example:

ROW (1)
(1, 2)
1

Select Expression

wildcardExpression | expression [[AS] columnAlias]

An expression in a SELECT statement.

Example:

ID AS VALUE

Sequence value expression

{ NEXT | CURRENT } VALUE FOR [schemaName.]sequenceName

The next or current value of a sequence.

When the next value is requested the sequence is incremented and the current
value of the sequence and the last identity in the current session are updated with
the generated value. Used values are never re-used, even when the transaction is
rolled back.

319 of 347

Current value may only be requested after generation of the sequence value in
the current session. It returns the latest generated value for the current session.

If a single command contains next and current value expressions for the same
sequence there is no guarantee that the next value expression will be evaluated
before the evaluation of current value expression.

Example:

NEXT VALUE FOR SEQ1
CURRENT VALUE FOR SCHEMA2.SEQ2

Sequence options

sequenceOption [...]

Options of a sequence.

Example:

START WITH 1
START WITH 10 INCREMENT BY 10

Sequence option

{ START | RESTART } WITH long
| INCREMENT BY long
| MINVALUE long | NO MINVALUE | NOMINVALUE
| MAXVALUE long | NO MAXVALUE | NOMAXVALUE
| CYCLE | NO CYCLE | NOCYCLE
| CACHE long | NO CACHE | NOCACHE

Option of a sequence.

START WITH and RESTART WITH are used to set the first generated value of the
sequence. START WITH may only be used in CREATE SEQUENCE command and it
column definition, RESTART WITH may only be used in ALTER SEQUENCE
command. The default is MINVALUE for incrementing sequences and MAXVALUE
for decrementing sequences.

INCREMENT BY specifies the step of the sequence, may be positive or negative,
but may not be zero. The default is 1.

MINVALUE and MAXVALUE specify the bounds of the sequence.

320 of 347

Sequences with CYCLE option start the generation again from MINVALUE
(incrementing sequences) or MAXVALUE (decrementing sequences) instead of
exhausting with an error.

The CACHE option sets the number of pre-allocated numbers. If the system
crashes without closing the database, at most this many numbers are lost. The
default cache size is 32. NO CACHE option or the cache size 1 or lower disable the
cache.

Example:

START WITH 10000
CYCLE
NO CACHE

Set clause list

{ { columnName = { DEFAULT | expression } }
| { (columnName [,...]) = { rowValueExpression | (query) } } } [,...]

List of SET clauses.

Example:

NAME = 'Test', VALUE = 2
(A, B) = (1, 2)
(A, B) = (1, 2), C = 3
(A, B) = (SELECT X, Y FROM OTHER T2 WHERE T1.ID = T2.ID)

Summand

factor [{ { + | - } factor } [...]]

A value or a numeric sum.

Please note the text concatenation operator is ||.

Example:

ID + 20

Table Expression

{ [schemaName.] tableName

321 of 347

| (query)
| unnest
| table
| dataChangeDeltaTable }
[[AS] newTableAlias [(columnName [,...])]]
[USE INDEX ([indexName [,...]])]
[{ { LEFT | RIGHT } [OUTER] | [INNER] | CROSS | NATURAL }
JOIN tableExpression [joinSpecification]]

Joins a table. The join specification is not supported for cross and natural joins. A
natural join is an inner join, where the condition is automatically on the columns
with the same name.

Example:

TEST1 AS T1 LEFT JOIN TEST2 AS T2 ON T1.ID = T2.PARENT_ID

Within group specification

WITHIN GROUP (ORDER BY {expression [ASC|DESC]} [,...])

Group specification for ordered set functions.

Example:

WITHIN GROUP (ORDER BY ID DESC)

Wildcard expression

{* | tableAlias.*} [EXCEPT ([tableAlias.]columnName, [,...])]

A wildcard expression in a SELECT statement. A wildcard expression represents all
visible columns. Some columns can be excluded with optional EXCEPT clause.

Example:

*
* EXCEPT (DATA)

Window name or specification

windowName | windowSpecification

A window name or inline specification for a window function or aggregate.
322 of 347

Window functions in H2 may require a lot of memory for large queries.

Example:

W1
(ORDER BY ID)

Window specification

([existingWindowName]
[PARTITION BY expression [,...]] [ORDER BY order [,...]]
[windowFrame])

A window specification for a window, window function or aggregate.

If name of an existing window is specified its clauses are used by default.

Optional window partition clause separates rows into independent partitions. Each
partition is processed separately. If this clause is not present there is one implicit
partition with all rows.

Optional window order clause specifies order of rows in the partition. If some
rows have the same order position they are considered as a group of rows in
optional window frame clause.

Optional window frame clause specifies which rows are processed by a window
function, see its documentation for a more details.

Example:

()
(W1 ORDER BY ID)
(PARTITION BY CATEGORY)
(PARTITION BY CATEGORY ORDER BY NAME, ID)
(ORDER BY Y RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
EXCLUDE TIES)

Window frame

ROWS|RANGE|GROUP
{windowFramePreceding|BETWEEN windowFrameBound AND
windowFrameBound}
[EXCLUDE {CURRENT ROW|GROUP|TIES|NO OTHERS}]

323 of 347

A window frame clause. May be specified only for aggregates and
FIRST_VALUE(), LAST_VALUE(), and NTH_VALUE() window functions.

If this clause is not specified for an aggregate or window function that supports
this clause the default window frame depends on window order clause. If window
order clause is also not specified the default window frame contains all the rows
in the partition. If window order clause is specified the default window frame
contains all preceding rows and all rows from the current group.

Window frame unit determines how rows or groups of rows are selected and
counted. If ROWS is specified rows are not grouped in any way and relative
numbers of rows are used in bounds. If RANGE is specified rows are grouped
according window order clause, preceding and following values mean the
difference between value in the current row and in the target rows, and CURRENT
ROW in bound specification means current group of rows. If GROUPS is specified
rows are grouped according window order clause, preceding and following values
means relative number of groups of rows, and CURRENT ROW in bound
specification means current group of rows.

If only window frame preceding clause is specified it is treated as BETWEEN
windowFramePreceding AND CURRENT ROW.

Optional window frame exclusion clause specifies rows that should be excluded
from the frame. EXCLUDE CURRENT ROW excludes only the current row
regardless the window frame unit. EXCLUDE GROUP excludes the whole current
group of rows, including the current row. EXCLUDE TIES excludes the current
group of rows, but not the current row. EXCLUDE NO OTHERS is default and it
does not exclude anything.

Example:

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW EXCLUDE TIES

Window frame preceding

UNBOUNDED PRECEDING|value PRECEDING|CURRENT ROW

A window frame preceding clause. If value is specified it should not be negative.

Example:

UNBOUNDED PRECEDING
1 PRECEDING
CURRENT ROW

324 of 347

Window frame bound

UNBOUNDED PRECEDING|value PRECEDING|CURRENT ROW
|value FOLLOWING|UNBOUNDED FOLLOWING

A window frame bound clause. If value is specified it should not be negative.

Example:

UNBOUNDED PRECEDING
UNBOUNDED FOLLOWING
1 FOLLOWING
CURRENT ROW

Term

{ value
| column
| ?[int]
| sequenceValueExpression
| function
| { - | + } term
| (expression)
| query
| case
| caseWhen
| userDefinedFunctionName }
[timeZone]

A value. Parameters can be indexed, for example ?1 meaning the first parameter.

Example:

'Hello'

Time zone

AT { TIME ZONE { intervalHourToMinute | intervalHourToSecond | string } |
LOCAL }

A time zone. Converts the timestamp with or without time zone into timestamp
with time zone at specified time zone. If a day-time interval is specified as a time
zone, it may not have fractional seconds and must be between -18 to 18 hours
inclusive.

325 of 347

Example:

AT LOCAL
AT TIME ZONE '2'
AT TIME ZONE '-6:00'
AT TIME ZONE INTERVAL '10:00' HOUR TO MINUTE
AT TIME ZONE INTERVAL '10:00:00' HOUR TO SECOND
AT TIME ZONE 'UTC'
AT TIME ZONE 'Europe/London'

Column

[[schemaName.]tableAlias.] { columnName | _ROWID_ }

A column name with optional table alias and schema. _ROWID_ can be used to
access unique row identifier.

Example:

ID

326 of 347

System Tables
Information Schema
Range Table

Information Schema

The system tables in the schema INFORMATION_SCHEMA contain the meta data
of all tables in the database as well as the current settings.

CATALOGS

CATALOG_NAME

COLLATIONS

NAME, KEY

COLUMNS

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME,
ORDINAL_POSITION, DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME,
COLUMN_DEFAULT, IS_NULLABLE, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, CHARACTER_OCTET_LENGTH,
NUMERIC_PRECISION, NUMERIC_PRECISION_RADIX, NUMERIC_SCALE,
DATETIME_PRECISION, INTERVAL_TYPE, INTERVAL_PRECISION,
CHARACTER_SET_NAME, COLLATION_NAME, TYPE_NAME, NULLABLE,
IS_COMPUTED, SELECTIVITY, CHECK_CONSTRAINT, SEQUENCE_NAME,
REMARKS, SOURCE_DATA_TYPE, COLUMN_TYPE, COLUMN_ON_UPDATE,
IS_VISIBLE

COLUMN_PRIVILEGES

GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME, PRIVILEGE_TYPE, IS_GRANTABLE

CONSTANTS

CONSTANT_CATALOG, CONSTANT_SCHEMA, CONSTANT_NAME, DATA_TYPE,
REMARKS, SQL, ID

327 of 347

CONSTRAINTS

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
CONSTRAINT_TYPE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
UNIQUE_INDEX_NAME, CHECK_EXPRESSION, COLUMN_LIST, REMARKS, SQL, ID

CROSS_REFERENCES

PKTABLE_CATALOG, PKTABLE_SCHEMA, PKTABLE_NAME, PKCOLUMN_NAME,
FKTABLE_CATALOG, FKTABLE_SCHEMA, FKTABLE_NAME, FKCOLUMN_NAME,
ORDINAL_POSITION, UPDATE_RULE, DELETE_RULE, FK_NAME, PK_NAME,
DEFERRABILITY

DOMAINS

DOMAIN_CATALOG, DOMAIN_SCHEMA, DOMAIN_NAME, COLUMN_DEFAULT,
IS_NULLABLE, DATA_TYPE, PRECISION, SCALE, TYPE_NAME, SELECTIVITY,
CHECK_CONSTRAINT, REMARKS, SQL, ID

FUNCTION_ALIASES

ALIAS_CATALOG, ALIAS_SCHEMA, ALIAS_NAME, JAVA_CLASS, JAVA_METHOD,
DATA_TYPE, TYPE_NAME, COLUMN_COUNT, RETURNS_RESULT, REMARKS, ID,
SOURCE

FUNCTION_COLUMNS

ALIAS_CATALOG, ALIAS_SCHEMA, ALIAS_NAME, JAVA_CLASS, JAVA_METHOD,
COLUMN_COUNT, POS, COLUMN_NAME, DATA_TYPE, TYPE_NAME, PRECISION,
SCALE, RADIX, NULLABLE, COLUMN_TYPE, REMARKS, COLUMN_DEFAULT

HELP

ID, SECTION, TOPIC, SYNTAX, TEXT

INDEXES

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, NON_UNIQUE, INDEX_NAME,
ORDINAL_POSITION, COLUMN_NAME, CARDINALITY, PRIMARY_KEY,
INDEX_TYPE_NAME, IS_GENERATED, INDEX_TYPE, ASC_OR_DESC, PAGES,
FILTER_CONDITION, REMARKS, SQL, ID, SORT_TYPE, CONSTRAINT_NAME,
INDEX_CLASS, AFFINITY

328 of 347

IN_DOUBT

TRANSACTION, STATE

KEY_COLUMN_USAGE

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME,
ORDINAL_POSITION, POSITION_IN_UNIQUE_CONSTRAINT

LOCKS

TABLE_SCHEMA, TABLE_NAME, SESSION_ID, LOCK_TYPE

QUERY_STATISTICS

SQL_STATEMENT, EXECUTION_COUNT, MIN_EXECUTION_TIME,
MAX_EXECUTION_TIME, CUMULATIVE_EXECUTION_TIME,
AVERAGE_EXECUTION_TIME, STD_DEV_EXECUTION_TIME, MIN_ROW_COUNT,
MAX_ROW_COUNT, CUMULATIVE_ROW_COUNT, AVERAGE_ROW_COUNT,
STD_DEV_ROW_COUNT

REFERENTIAL_CONSTRAINTS

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
UNIQUE_CONSTRAINT_CATALOG, UNIQUE_CONSTRAINT_SCHEMA,
UNIQUE_CONSTRAINT_NAME, MATCH_OPTION, UPDATE_RULE, DELETE_RULE

RIGHTS

GRANTEE, GRANTEETYPE, GRANTEDROLE, RIGHTS, TABLE_SCHEMA,
TABLE_NAME, ID

ROLES

NAME, REMARKS, ID

SCHEMATA

CATALOG_NAME, SCHEMA_NAME, SCHEMA_OWNER,
DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME, IS_DEFAULT,
REMARKS, ID

329 of 347

SEQUENCES

SEQUENCE_CATALOG, SEQUENCE_SCHEMA, SEQUENCE_NAME,
CURRENT_VALUE, INCREMENT, IS_GENERATED, REMARKS, CACHE, MIN_VALUE,
MAX_VALUE, IS_CYCLE, ID

SESSIONS

ID, USER_NAME, SERVER, CLIENT_ADDR, CLIENT_INFO, SESSION_START,
ISOLATION_LEVEL, STATEMENT, STATEMENT_START,
CONTAINS_UNCOMMITTED, STATE, BLOCKER_ID

SESSION_STATE

KEY, SQL

SETTINGS

NAME, VALUE

SYNONYMS

SYNONYM_CATALOG, SYNONYM_SCHEMA, SYNONYM_NAME, SYNONYM_FOR,
SYNONYM_FOR_SCHEMA, TYPE_NAME, STATUS, REMARKS, ID

TABLES

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE, STORAGE_TYPE,
SQL, REMARKS, LAST_MODIFICATION, ID, TYPE_NAME, TABLE_CLASS,
ROW_COUNT_ESTIMATE

TABLE_CONSTRAINTS

CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
CONSTRAINT_TYPE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
IS_DEFERRABLE, INITIALLY_DEFERRED

TABLE_PRIVILEGES

GRANTOR, GRANTEE, TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
PRIVILEGE_TYPE, IS_GRANTABLE

330 of 347

TABLE_TYPES

TYPE

TRIGGERS

TRIGGER_CATALOG, TRIGGER_SCHEMA, TRIGGER_NAME, TRIGGER_TYPE,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, BEFORE, JAVA_CLASS,
QUEUE_SIZE, NO_WAIT, REMARKS, SQL, ID

TYPE_INFO

TYPE_NAME, DATA_TYPE, PRECISION, PREFIX, SUFFIX, PARAMS,
AUTO_INCREMENT, MINIMUM_SCALE, MAXIMUM_SCALE, RADIX, POS,
CASE_SENSITIVE, NULLABLE, SEARCHABLE

USERS

NAME, ADMIN, REMARKS, ID

VIEWS

TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, VIEW_DEFINITION,
CHECK_OPTION, IS_UPDATABLE, STATUS, REMARKS, ID

Range Table

The range table is a dynamic system table that contains all values from a start to
an end value. Non-zero step value may be also specified, default is 1. Start value,
end value, and optional step value are converted to BIGINT data type. The table
contains one column called X. If start value is greater than end value and step is
positive the result is empty. If start value is less than end value and step is
negative the result is empty too. If start value is equal to end value the result
contains only start value. Start value, start value plus step, start value plus step
multiplied by two and so on are included in result. If step is positive the last value
is less than or equal to the specified end value. If step in negative the last value is
greater than or equal to the specified end value. The table is used as follows:

Examples:

SELECT X FROM SYSTEM_RANGE(1, 10);
-- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

331 of 347

SELECT X FROM SYSTEM_RANGE(1, 10, 2);
-- 1, 3, 5, 7, 9
SELECT X FROM SYSTEM_RANGE(1, 10, -1);
-- No rows
SELECT X FROM SYSTEM_RANGE(10, 2, -2);
-- 10, 8, 6, 4, 2

332 of 347

Build
Portability
Environment
Building the Software
Build Targets
Using Maven 2
Using Eclipse
Translating
Submitting Source Code Changes
Reporting Problems or Requests
Automated Build
Generating Railroad Diagrams

Portability

This database is written in Java and therefore works on many platforms.

Environment

To run this database, a Java Runtime Environment (JRE) version 7 or higher is
required.

To create the database executables, the following software stack was used. To
use this database, it is not required to install this software however.

• Mac OS X and Windows
• Oracle JDK Version 7 (version 7 is not available for free download any more)
• Eclipse
• Eclipse Plugins: Subclipse, Eclipse Checkstyle Plug-in, EclEmma Java Code

Coverage
• Mozilla Firefox
• OpenOffice
• NSIS (Nullsoft Scriptable Install System)
• Maven

Building the Software

You need to install a JDK, for example the Oracle JDK version 7 or 8. Ensure that
Java binary directory is included in the PATH environment variable, and that the
environment variable JAVA_HOME points to your Java installation. On the
command line, go to the directory h2 and execute the following command:

333 of 347

http://maven.apache.org/
http://nsis.sourceforge.net/
http://www.openoffice.org/
https://www.mozilla.com/firefox
http://www.eclemma.org/
http://www.eclemma.org/
https://checkstyle.github.io/eclipse-cs/
http://subclipse.tigris.org/
http://www.eclipse.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

build -?

For Linux and OS X, use ./build.sh instead of build.

You will get a list of targets. If you want to build the jar file, execute (Windows):

build jar

To run the build tool in shell mode, use the command line option -:

./build.sh -

Build Targets

The build system can generate smaller jar files as well. The following targets are
currently supported:

• jarClient creates the file h2client.jar. This only contains the JDBC client.
• jarSmall creates the file h2small.jar. This only contains the embedded

database. Debug information is disabled.
• javadocImpl creates the Javadocs of the implementation.

To create the file h2client.jar, go to the directory h2 and execute the following
command:

build jarClient

Using Apache Lucene

Apache Lucene 5.5.5 is used for testing. Newer versions up to 8.0.* can also be
used.

Using Maven 2

Using a Central Repository

You can include the database in your Maven 2 project as a dependency. Example:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.4.200</version>

334 of 347

</dependency>

New versions of this database are first uploaded to
http://hsql.sourceforge.net/m2-repo/ and then automatically synchronized with
the main Maven repository; however after a new release it may take a few hours
before they are available there.

Maven Plugin to Start and Stop the TCP Server

A Maven plugin to start and stop the H2 TCP server is available from Laird Nelson
at GitHub. To start the H2 server, use:

mvn com.edugility.h2-maven-plugin:1.0-SNAPSHOT:spawn

To stop the H2 server, use:

mvn com.edugility.h2-maven-plugin:1.0-SNAPSHOT:stop

Using Snapshot Version

To build a h2-*-SNAPSHOT.jar file and upload it the to the local Maven 2
repository, execute the following command:

build mavenInstallLocal

Afterwards, you can include the database in your Maven 2 project as a
dependency:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.0-SNAPSHOT</version>
</dependency>

Using Eclipse

To create an Eclipse project for H2, use the following steps:

• Install Git and Eclipse.
• Get the H2 source code from Github:

git clone https://github.com/h2database/h2database

335 of 347

http://www.eclipse.org/
https://github.com/ljnelson/h2-maven-plugin
https://github.com/ljnelson/h2-maven-plugin
http://repo2.maven.org/maven2/com/h2database/h2/

• Download all dependencies:
build.bat download(Windows)
./build.sh download(otherwise)

• In Eclipse, create a new Java project from existing source code: File, New,
Project, Java Project, Create project from existing source.

• Select the h2 folder, click Next and Finish.
• To resolve com.sun.javadoc import statements, you may need to manually

add the file <java.home>/../lib/tools.jar to the build path.

Translating

The translation of this software is split into the following parts:

• H2 Console: src/main/org/h2/server/web/res/_text_*.prop
• Error messages: src/main/org/h2/res/_messages_*.prop

To translate the H2 Console, start it and select Preferences / Translate. After you
are done, send the translated *.prop file to the Google Group. The web site is
currently translated using Google.

Submitting Source Code Changes

If you'd like to contribute bug fixes or new features, please consider the following
guidelines to simplify merging them:

• Only use Java 7 features (do not use Java 8/9/etc) (see Environment).
• Follow the coding style used in the project, and use Checkstyle (see above)

to verify. For example, do not use tabs (use spaces instead). The checkstyle
configuration is in src/installer/checkstyle.xml.

• A template of the Eclipse settings are in src/installer/eclipse.settings/*. If
you want to use them, you need to copy them to the .settings directory. The
formatting options (eclipseCodeStyle) are also included.

• Please provide test cases and integrate them into the test suite. For Java
level tests, see src/test/org/h2/test/TestAll.java. For SQL level tests, see
SQL files in src/test/org/h2/test/scripts.

• The test cases should cover at least 90% of the changed and new code; use
a code coverage tool to verify that (see above). or use the build target
coverage.

• Verify that you did not break other features: run the test cases by executing
build test.

• Provide end user documentation if required (src/docsrc/html/*).
• Document grammar changes in src/docsrc/help/help.csv
• Provide a change log entry (src/docsrc/html/changelog.html).

336 of 347

• Verify the spelling using build spellcheck. If required add the new words to
src/tools/org/h2/build/doc/dictionary.txt.

• Run src/installer/buildRelease to find and fix formatting errors.
• Verify the formatting using build docs and build javadoc.
• Submit changes using GitHub's "pull requests". You'll require a free GitHub

account. If you are not familiar with pull requests, please read GitHub's
Using pull requests page.

For legal reasons, patches need to be public in the form of an issue report or
attachment or in the form of an email to the group. Significant contributions need
to include the following statement:

"I wrote the code, it's mine, and I'm contributing it to H2 for distribution multiple-
licensed under the MPL 2.0, and the EPL 1.0
(https://h2database.com/html/license.html)."

Reporting Problems or Requests

Please consider the following checklist if you have a question, want to report a
problem, or if you have a feature request:

• For bug reports, please provide a short, self contained, correct (compilable),
example of the problem.

• Feature requests are always welcome, even if the feature is already on the
roadmap. Your mail will help prioritize feature requests. If you urgently need
a feature, consider providing a patch.

• Before posting problems, check the FAQ and do a Google search.
• When got an unexpected exception, please try the Error Analyzer tool. If

this doesn't help, please report the problem, including the complete error
message and stack trace, and the root cause stack trace(s).

• When sending source code, please use a public web clipboard such as
Pastebin or Mystic Paste to avoid formatting problems. Please keep test
cases as simple and short as possible, but so that the problem can still be
reproduced. As a template, use: HelloWorld.java. Method that simply call
other methods should be avoided, as well as unnecessary exception
handling. Please use the JDBC API and no external tools or libraries. The
test should include all required initialization code, and should be started with
the main method.

• For large attachments, use a public storage such as Google Drive.
• Google Group versus issue tracking: Use the Google Group for questions or

if you are not sure it's a bug. If you are sure it's a bug, you can create an
issue, but you don't need to (sending an email to the group is enough).
Please note that only few people monitor the issue tracking system.

• For out-of-memory problems, please analyze the problem yourself first, for
example using the command line option -XX:

337 of 347

https://github.com/h2database/h2database/issues
http://groups.google.com/group/h2-database
https://www.google.com/drive/
https://github.com/h2database/h2database/tree/master/h2/src/test/org/h2/samples/HelloWorld.java
http://www.mysticpaste.com/new
https://pastebin.com/
https://h2database.com/html/sourceError.html
http://google.com/
https://h2database.com/html/roadmap.html
http://sscce.org/
http://sscce.org/
https://groups.google.com/group/h2-database
https://github.com/h2database/h2database/issues
https://github.com/h2database/h2database/issues
https://help.github.com/articles/using-pull-requests/
https://github.com/

+HeapDumpOnOutOfMemoryError (to create a heap dump file on out of
memory) and a memory analysis tool such as the Eclipse Memory Analyzer
(MAT).

• It may take a few days to get an answers. Please do not double post.

Automated Build

This build process is automated and runs regularly. The build process includes
running the tests and code coverage, using the command line ./build.sh jar
testTravis. The results are available on Travis CI.

Generating Railroad Diagrams

The railroad diagrams of the SQL grammar are HTML, formatted as nested tables.
The diagrams are generated as follows:

• The BNF parser (org.h2.bnf.Bnf) reads and parses the BNF from the file
help.csv.

• The page parser (org.h2.server.web.PageParser) reads the template HTML
file and fills in the diagrams.

• The rail images (one straight, four junctions, two turns) are generated using
a simple Java application.

To generate railroad diagrams for other grammars, see the package org.h2.jcr.
This package is used to generate the SQL-2 railroad diagrams for the JCR 2.0
specification.

338 of 347

https://travis-ci.org/h2database/h2database/branches
http://www.eclipse.org/mat
http://www.eclipse.org/mat

History and Roadmap
Change Log
Roadmap
History of this Database Engine
Why Java
Supporters

Change Log

The up-to-date change log is available at
https://h2database.com/html/changelog.html

Roadmap

The current roadmap is available at https://h2database.com/html/roadmap.html

History of this Database Engine

The development of H2 was started in May 2004, but it was first published on
December 14th 2005. The original author of H2, Thomas Mueller, is also the
original developer of Hypersonic SQL. In 2001, he joined PointBase Inc. where he
wrote PointBase Micro, a commercial Java SQL database. At that point, he had to
discontinue Hypersonic SQL. The HSQLDB Group was formed to continued to
work on the Hypersonic SQL codebase. The name H2 stands for Hypersonic 2,
however H2 does not share code with Hypersonic SQL or HSQLDB. H2 is built
from scratch.

Why Java

The main reasons to use a Java database are:

• Very simple to integrate in Java applications
• Support for many different platforms
• More secure than native applications (no buffer overflows)
• User defined functions (or triggers) run very fast
• Unicode support

Some think Java is too slow for low level operations, but this is no longer true.
Garbage collection for example is now faster than manual memory management.

339 of 347

https://h2database.com/html/roadmap.html
https://h2database.com/html/changelog.html

Developing Java code is faster than developing C or C++ code. When using Java,
most time can be spent on improving the algorithms instead of porting the code
to different platforms or doing memory management. Features such as Unicode
and network libraries are already built-in. In Java, writing secure code is easier
because buffer overflows can not occur. Features such as reflection can be used
for randomized testing.

Java is future proof: a lot of companies support Java. Java is now open source.

To increase the portability and ease of use, this software depends on very few
libraries. Features that are not available in open source Java implementations
(such as Swing) are not used, or only used for optional features.

Supporters

Many thanks for those who reported bugs, gave valuable feedback, spread the
word, and translated this project.

Also many thanks to the donors. To become a donor, use PayPal (at the very
bottom of the main web page). Donators are:

• Martin Wildam, Austria
• tagtraum industries incorporated, USA
• TimeWriter, Netherlands
• Cognitect, USA
• Code 42 Software, Inc., Minneapolis
• Code Lutin, France
• NetSuxxess GmbH, Germany
• Poker Copilot, Steve McLeod, Germany
• SkyCash, Poland
• Lumber-mill, Inc., Japan
• StockMarketEye, USA
• Eckenfelder GmbH & Co.KG, Germany
• Jun Iyama, Japan
• Steven Branda, USA
• Anthony Goubard, Netherlands
• Richard Hickey, USA
• Alessio Jacopo D'Adamo, Italy
• Ashwin Jayaprakash, USA
• Donald Bleyl, USA
• Frank Berger, Germany
• Florent Ramiere, France
• Antonio Casqueiro, Portugal
• Oliver Computing LLC, USA

340 of 347

http://www.eckenfelder.de/
http://www.stockmarketeye.com/
http://lumber-mill.co.jp/
http://skycash.com/
http://pokercopilot.com/
http://www.netsuxxess.de/
http://www.codelutin.com/
http://www.code42.com/
http://cognitect.com/
http://www.timewriter.com/
http://www.tagtraum.com/

• Harpal Grover Consulting Inc., USA
• Elisabetta Berlini, Italy
• William Gilbert, USA
• Antonio Dieguez Rojas, Chile
• Ontology Works, USA
• Pete Haidinyak, USA
• William Osmond, USA
• Joachim Ansorg, Germany
• Oliver Soerensen, Germany
• Christos Vasilakis, Greece
• Fyodor Kupolov, Denmark
• Jakob Jenkov, Denmark
• Stéphane Chartrand, Switzerland
• Glenn Kidd, USA
• Gustav Trede, Sweden
• Joonas Pulakka, Finland
• Bjorn Darri Sigurdsson, Iceland
• Gray Watson, USA
• Erik Dick, Germany
• Pengxiang Shao, China
• Bilingual Marketing Group, USA
• Philippe Marschall, Switzerland
• Knut Staring, Norway
• Theis Borg, Denmark
• Mark De Mendonca Duske, USA
• Joel A. Garringer, USA
• Olivier Chafik, France
• Rene Schwietzke, Germany
• Jalpesh Patadia, USA
• Takanori Kawashima, Japan
• Terrence JC Huang, China
• JiaDong Huang, Australia
• Laurent van Roy, Belgium
• Qian Chen, China
• Clinton Hyde, USA
• Kritchai Phromros, Thailand
• Alan Thompson, USA
• Ladislav Jech, Czech Republic
• Dimitrijs Fedotovs, Latvia
• Richard Manley-Reeve, United Kingdom
• Daniel Cyr, ThirdHalf.com, LLC, USA
• Peter Jünger, Germany
• Dan Keegan, USA
• Rafel Israels, Germany

341 of 347

http://www.FairGo128.com/
http://ontologyworks.com/

• Fabien Todescato, France
• Cristan Meijer, Netherlands
• Adam McMahon, USA
• Fábio Gomes Lisboa Gomes, Brasil
• Lyderic Landry, England
• Mederp, Morocco
• Joaquim Golay, Switzerland
• Clemens Quoss, Germany
• Kervin Pierre, USA
• Jake Bellotti, Australia
• Arun Chittanoor, USA

342 of 347

Frequently Asked Questions
I Have a Problem or Feature Request
Are there Known Bugs? When is the Next Release?
Is this Database Engine Open Source?
Is Commercial Support Available?
How to Create a New Database?
How to Connect to a Database?
Where are the Database Files Stored?
What is the Size Limit (Maximum Size) of a Database?
Is it Reliable?
Why is Opening my Database Slow?
My Query is Slow
H2 is Very Slow
Column Names are Incorrect?
Float is Double?
How to Translate this Project?
How to Contribute to this Project?

I Have a Problem or Feature Request

Please read the support checklist.

Are there Known Bugs? When is the Next Release?

Usually, bugs get fixes as they are found. There is a release every few weeks.
Here is the list of known and confirmed issues:

• When opening a database file in a timezone that has different daylight
saving rules: the time part of dates where the daylight saving doesn't match
will differ. This is not a problem within regions that use the same rules (such
as, within USA, or within Europe), even if the timezone itself is different. As
a workaround, export the database to a SQL script using the old timezone,
and create a new database in the new timezone.

• Tomcat and Glassfish 3 set most static fields (final or non-final) to null when
unloading a web application. This can cause a NullPointerException in H2
versions 1.1.107 and older, and may still not work in newer versions. Please
report it if you run into this issue. In Tomcat >= 6.0 this behavior can be
disabled by setting the system property
org.apache.catalina.loader.WebappClassLoader.ENABLE_CLEAR_REFERENCE
S=false, however Tomcat may then run out of memory. A known
workaround is to put the h2*.jar file in a shared lib directory (common/lib).

343 of 347

• Some problems have been found with right outer join. Internally, it is
converted to left outer join, which does not always produce the same results
as other databases when used in combination with other joins. This problem
is fixed in H2 version 1.3.

For a complete list, see Open Issues.

Is this Database Engine Open Source?

Yes. It is free to use and distribute, and the source code is included. See also
under license.

Is Commercial Support Available?

No, currently commercial support is not available.

How to Create a New Database?

By default, a new database is automatically created if it does not yet exist when
embedded URL is used. See Creating New Databases.

How to Connect to a Database?

The database driver is org.h2.Driver, and the database URL starts with jdbc:h2:.
To connect to a database using JDBC, use the following code:

Connection conn = DriverManager.getConnection("jdbc:h2:~/test", "sa", "");

Where are the Database Files Stored?

When using database URLs like jdbc:h2:~/test, the database is stored in the user
directory. For Windows, this is usually C:\Documents and Settings\<userName>
or C:\Users\<userName>. If the base directory is not set (as in jdbc:h2:./test),
the database files are stored in the directory where the application is started (the
current working directory). When using the H2 Console application from the start
menu, this is <Installation Directory>/bin. The base directory can be set in the
database URL. A fixed or relative path can be used. When using the URL
jdbc:h2:file:./data/sample, the database is stored in the directory data (relative to
the current working directory). The directory is created automatically if it does not
yet exist. It is also possible to use the fully qualified directory name (and for
Windows, drive name). Example: jdbc:h2:file:C:/data/test

344 of 347

https://github.com/h2database/h2database/issues

What is the Size Limit (Maximum Size) of a Database?

See Limits and Limitations.

Is it Reliable?

That is not easy to say. It is still a quite new product. A lot of tests have been
written, and the code coverage of these tests is higher than 80% for each
package. Randomized stress tests are run regularly. But there are probably still
bugs that have not yet been found (as with most software). Some features are
known to be dangerous, they are only supported for situations where
performance is more important than reliability. Those dangerous features are:

• Disabling the transaction log or FileDescriptor.sync() using LOG=0 or
LOG=1.

• Using the transaction isolation level READ_UNCOMMITTED (LOCK_MODE 0)
while at the same time using multiple connections.

• Disabling database file protection using (setting FILE_LOCK to NO in the
database URL).

• Disabling referential integrity using SET REFERENTIAL_INTEGRITY FALSE.

In addition to that, running out of memory should be avoided. In older versions,
OutOfMemory errors while using the database could corrupt a databases.

This database is well tested using automated test cases. The tests run every night
and run for more than one hour. But not all areas of this database are equally
well tested. When using one of the following features for production, please
ensure your use case is well tested (if possible with automated test cases). The
areas that are not well tested are:

• Platforms other than Windows, Linux, Mac OS X, or runtime environments
other than Oracle / OpenJDK 7, 8, 9.

• The features AUTO_SERVER and AUTO_RECONNECT.
• Cluster mode, 2-phase commit, savepoints.
• Fulltext search.
• Operations on LOBs over 2 GB.
• The optimizer may not always select the best plan.
• Using the ICU4J collator.

Areas considered experimental are:

• The PostgreSQL server
• Clustering (there are cases were transaction isolation can be broken due to

timing issues, for example one session overtaking another session).

345 of 347

• Compatibility modes for other databases (only some features are
implemented).

• The soft reference cache (CACHE_TYPE=SOFT_LRU). It might not improve
performance, and out of memory issues have been reported.

Some users have reported that after a power failure, the database cannot be
opened sometimes. In this case, use a backup of the database or the Recover
tool. Please report such problems. The plan is that the database automatically
recovers in all situations.

Why is Opening my Database Slow?

To find out what the problem is, use the H2 Console and click on "Test
Connection" instead of "Login". After the "Login Successful" appears, click on it
(it's a link). This will list the top stack traces. Then either analyze this yourself, or
post those stack traces in the Google Group.

Other possible reasons are: the database is very big (many GB), or contains linked
tables that are slow to open.

My Query is Slow

Slow SELECT (or DELETE, UPDATE, MERGE) statement can have multiple reasons.
Follow this checklist:

• Run ANALYZE (see documentation for details).
• Run the query with EXPLAIN and check if indexes are used (see

documentation for details).
• If required, create additional indexes and try again using ANALYZE and

EXPLAIN.
• If it doesn't help please report the problem.

H2 is Very Slow

By default, H2 closes the database when the last connection is closed. If your
application closes the only connection after each operation, the database is
opened and closed a lot, which is quite slow. There are multiple ways to solve this
problem, see Database Performance Tuning.

346 of 347

Column Names are Incorrect?

For the query SELECT ID AS X FROM TEST the method
ResultSetMetaData.getColumnName() returns ID, I expect it to return X. What's
wrong?

This is not a bug. According the JDBC specification, the method
ResultSetMetaData.getColumnName() should return the name of the column and
not the alias name. If you need the alias name, use
ResultSetMetaData.getColumnLabel(). Some other database don't work like this
yet (they don't follow the JDBC specification). If you need compatibility with those
databases, use the Compatibility Mode, or append ;ALIAS_COLUMN_NAME=TRUE
to the database URL.

This also applies to DatabaseMetaData calls that return a result set. The columns
in the JDBC API are column labels, not column names.

Float is Double?

For a table defined as CREATE TABLE TEST(X FLOAT) the method
ResultSet.getObject() returns a java.lang.Double, I expect it to return a
java.lang.Float. What's wrong?

This is not a bug. According the JDBC specification, the JDBC data type FLOAT is
equivalent to DOUBLE, and both are mapped to java.lang.Double. See also
Mapping SQL and Java Types - 8.3.10 FLOAT.

Use REAL or FLOAT(24) data type for java.lang.Float values.

How to Translate this Project?

For more information, see Build/Translating.

How to Contribute to this Project?

There are various way to help develop an open source project like H2. The first
step could be to translate the error messages and the GUI to your native
language. Then, you could provide patches. Please start with small patches. That
could be adding a test case to improve the code coverage (the target code
coverage for this project is 90%, higher is better). You will have to develop, build
and run the tests. Once you are familiar with the code, you could implement
missing features from the feature request list. I suggest to start with very small
features that are easy to implement. Keep in mind to provide test cases as well.

347 of 347

https://h2database.com/html/roadmap.html
https://docs.oracle.com/javase/1.5.0/docs/guide/jdbc/getstart/mapping.html#1055162
https://h2database.com/javadoc/org/h2/engine/DbSettings.html#ALIAS_COLUMN_NAME
https://docs.oracle.com/javase/7/docs/api/java/sql/ResultSetMetaData.html#getColumnLabel(int)

	Quickstart
	Embedding H2 in an Application
	The H2 Console Application
	Step-by-Step
	Installation
	Start the Console
	Login
	Sample
	Execute
	Disconnect
	End

	Installation
	Requirements
	Database Engine
	H2 Console

	Supported Platforms
	Installing the Software
	Directory Structure

	Tutorial
	Starting and Using the H2 Console
	Firewall
	Testing Java
	Error Message 'Port may be in use'
	Using another Port
	Connecting to the Server using a Browser
	Multiple Concurrent Sessions
	Login
	Error Messages
	Adding Database Drivers
	Using the H2 Console
	Inserting Table Names or Column Names
	Disconnecting and Stopping the Application

	Special H2 Console Syntax
	Settings of the H2 Console
	Connecting to a Database using JDBC
	Creating New Databases
	Using the Server
	Starting the Server Tool from Command Line
	Connecting to the TCP Server
	Starting the TCP Server within an Application
	Stopping a TCP Server from Another Process

	Using Hibernate
	Using TopLink and Glassfish
	Using EclipseLink
	Using Apache ActiveMQ
	Using H2 within NetBeans
	Using H2 with jOOQ
	Using Databases in Web Applications
	Embedded Mode
	Server Mode
	Using a Servlet Listener to Start and Stop a Database
	Using the H2 Console Servlet

	Android
	CSV (Comma Separated Values) Support
	Reading a CSV File from Within a Database
	Importing Data from a CSV File
	Writing a CSV File from Within a Database
	Writing a CSV File from a Java Application
	Reading a CSV File from a Java Application

	Upgrade, Backup, and Restore
	Database Upgrade
	Backup using the Script Tool
	Restore from a Script
	Online Backup

	Command Line Tools
	The Shell Tool
	Using OpenOffice Base
	Java Web Start / JNLP
	Using a Connection Pool
	Fulltext Search
	Using the Native Fulltext Search
	Using the Apache Lucene Fulltext Search

	User-Defined Variables
	Date and Time
	Using Spring
	Using the TCP Server

	OSGi
	Java Management Extension (JMX)

	Features
	Feature List
	Main Features
	Additional Features
	SQL Support
	Security Features
	Other Features and Tools

	H2 in Use
	Connection Modes
	Embedded Mode
	Server Mode
	Mixed Mode

	Database URL Overview
	Connecting to an Embedded (Local) Database
	In-Memory Databases
	Database Files Encryption
	Creating a New Database with File Encryption
	Connecting to an Encrypted Database
	Encrypting or Decrypting a Database

	Database File Locking
	Opening a Database Only if it Already Exists
	Closing a Database
	Delayed Database Closing
	Don't Close a Database when the VM Exits

	Execute SQL on Connection
	Ignore Unknown Settings
	Changing Other Settings when Opening a Connection
	Custom File Access Mode
	Multiple Connections
	Opening Multiple Databases at the Same Time
	Multiple Connections to the Same Database: Client/Server
	Multithreading Support
	Locking, Lock-Timeout, Deadlocks
	Avoiding Deadlocks

	Database File Layout
	Moving and Renaming Database Files
	Backup

	Logging and Recovery
	Compatibility
	Compatibility Modes
	DB2 Compatibility Mode
	Derby Compatibility Mode
	HSQLDB Compatibility Mode
	MS SQL Server Compatibility Mode
	MySQL Compatibility Mode
	Oracle Compatibility Mode
	PostgreSQL Compatibility Mode
	Ignite Compatibility Mode

	Auto-Reconnect
	Automatic Mixed Mode
	Page Size
	Using the Trace Options
	Trace Options
	Setting the Maximum Size of the Trace File
	Java Code Generation

	Using Other Logging APIs
	Read Only Databases
	Read Only Databases in Zip or Jar File
	Opening a Corrupted Database

	Computed Columns / Function Based Index
	Multi-Dimensional Indexes
	User-Defined Functions and Stored Procedures
	Referencing a Compiled Method
	Declaring Functions as Source Code
	Method Overloading
	Function Data Type Mapping
	Functions That Require a Connection
	Functions Throwing an Exception
	Functions Returning a Result Set
	Using SimpleResultSet
	Using a Function as a Table

	Pluggable or User-Defined Tables
	Triggers
	Compacting a Database
	Cache Settings
	External authentication (Experimental)

	Performance
	Performance Comparison
	Embedded
	Client-Server
	Benchmark Results and Comments
	H2
	HSQLDB
	Derby
	PostgreSQL
	MySQL
	Firebird
	Why Oracle / MS SQL Server / DB2 are Not Listed

	About this Benchmark
	How to Run
	Separate Process per Database
	Number of Connections
	Real-World Tests
	Comparing Embedded with Server Databases
	Test Platform
	Multiple Runs
	Memory Usage
	Delayed Operations
	Transaction Commit / Durability
	Using Prepared Statements
	Currently Not Tested: Startup Time

	PolePosition Benchmark
	Database Performance Tuning
	Keep Connections Open or Use a Connection Pool
	Use a Modern JVM
	Virus Scanners
	Using the Trace Options
	Index Usage
	Index Hints
	How Data is Stored Internally
	Optimizer
	Expression Optimization
	COUNT(*) Optimization
	Updating Optimizer Statistics / Column Selectivity
	In-Memory (Hash) Indexes
	Use Prepared Statements
	Prepared Statements and IN(...)
	Optimization Examples
	Cache Size and Type
	Data Types
	Sorted Insert Optimization

	Using the Built-In Profiler
	Application Profiling
	Analyze First

	Database Profiling
	Statement Execution Plans
	Displaying the Scan Count
	Special Optimizations

	How Data is Stored and How Indexes Work
	Indexes
	Using Multiple Indexes

	Fast Database Import

	Advanced
	Result Sets
	Statements that Return a Result Set
	Limiting the Number of Rows
	Large Result Sets and External Sorting

	Large Objects
	Storing and Reading Large Objects
	When to use CLOB/BLOB
	Large Object Compression

	Linked Tables
	Updatable Views
	Transaction Isolation
	Multi-Version Concurrency Control (MVCC)
	Table Level Locking (PageStore engine)
	Lock Timeout

	Clustering / High Availability
	Using the CreateCluster Tool
	Detect Which Cluster Instances are Running
	Clustering Algorithm and Limitations

	Two Phase Commit
	Compatibility
	Transaction Commit when Autocommit is On

	Keywords / Reserved Words
	Standards Compliance
	Supported Character Sets, Character Encoding, and Unicode

	Run as Windows Service
	Install the Service
	Start the Service
	Connect to the H2 Console
	Stop the Service
	Uninstall the Service
	Additional JDBC drivers

	ODBC Driver
	ODBC Installation
	Starting the Server
	ODBC Configuration
	PG Protocol Support Limitations
	Security Considerations
	Using Microsoft Access

	Using H2 in Microsoft .NET
	Using the ADO.NET API on .NET
	Using the JDBC API on .NET

	ACID
	Atomicity
	Consistency
	Isolation
	Durability

	Durability Problems
	Ways to (Not) Achieve Durability
	Running the Durability Test

	Using the Recover Tool
	File Locking Protocols
	File Locking Method 'File'
	File Locking Method 'Socket'
	File Locking Method 'FS'

	Using Passwords
	Using Secure Passwords
	Passwords: Using Char Arrays instead of Strings
	Passing the User Name and/or Password in the URL

	Password Hash
	Protection against SQL Injection
	What is SQL Injection
	Disabling Literals
	Using Constants
	Using the ZERO() Function

	Protection against Remote Access
	Restricting Class Loading and Usage
	Security Protocols
	User Password Encryption
	File Encryption
	Wrong Password / User Name Delay
	HTTPS Connections

	TLS Connections
	Universally Unique Identifiers (UUID)
	Spatial Features
	Recursive Queries
	Settings Read from System Properties
	Setting the Server Bind Address
	Pluggable File System
	Split File System
	Database Upgrade
	Java Objects Serialization
	Custom Data Types Handler API
	Limits and Limitations
	Glossary and Links

	Commands
	Index
	Commands (Data Manipulation)
	Commands (Data Definition)
	Commands (Other)

	Commands (Data Manipulation)
	SELECT
	INSERT
	UPDATE
	DELETE
	BACKUP
	CALL
	EXECUTE IMMEDIATE
	EXPLAIN
	MERGE INTO
	MERGE USING
	RUNSCRIPT
	SCRIPT
	SHOW
	Explicit table
	Table value
	WITH

	Commands (Data Definition)
	ALTER INDEX RENAME
	ALTER SCHEMA RENAME
	ALTER SEQUENCE
	ALTER TABLE ADD
	ALTER TABLE ADD CONSTRAINT
	ALTER TABLE RENAME CONSTRAINT
	ALTER TABLE ALTER COLUMN
	ALTER TABLE DROP COLUMN
	ALTER TABLE DROP CONSTRAINT
	ALTER TABLE SET
	ALTER TABLE RENAME
	ALTER USER ADMIN
	ALTER USER RENAME
	ALTER USER SET PASSWORD
	ALTER VIEW RECOMPILE
	ALTER VIEW RENAME
	ANALYZE
	COMMENT
	CREATE AGGREGATE
	CREATE ALIAS
	CREATE CONSTANT
	CREATE DOMAIN
	CREATE INDEX
	CREATE LINKED TABLE
	CREATE ROLE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	DROP AGGREGATE
	DROP ALIAS
	DROP ALL OBJECTS
	DROP CONSTANT
	DROP DOMAIN
	DROP INDEX
	DROP ROLE
	DROP SCHEMA
	DROP SEQUENCE
	DROP TABLE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	TRUNCATE TABLE

	Commands (Other)
	CHECKPOINT
	CHECKPOINT SYNC
	COMMIT
	COMMIT TRANSACTION
	GRANT RIGHT
	GRANT ALTER ANY SCHEMA
	GRANT ROLE
	HELP
	PREPARE COMMIT
	REVOKE RIGHT
	REVOKE ROLE
	ROLLBACK
	ROLLBACK TRANSACTION
	SAVEPOINT
	SET @
	SET ALLOW_LITERALS
	SET AUTOCOMMIT
	SET CACHE_SIZE
	SET CLUSTER
	SET BINARY_COLLATION
	SET UUID_COLLATION
	SET BUILTIN_ALIAS_OVERRIDE
	SET CATALOG
	SET COLLATION
	SET COMPRESS_LOB
	SET DATABASE_EVENT_LISTENER
	SET DB_CLOSE_DELAY
	SET DEFAULT_LOCK_TIMEOUT
	SET DEFAULT_TABLE_TYPE
	SET EXCLUSIVE
	SET IGNORECASE
	SET IGNORE_CATALOGS
	SET JAVA_OBJECT_SERIALIZER
	SET LAZY_QUERY_EXECUTION
	SET LOG
	SET LOCK_MODE
	SET LOCK_TIMEOUT
	SET MAX_LENGTH_INPLACE_LOB
	SET MAX_LOG_SIZE
	SET MAX_MEMORY_ROWS
	SET MAX_MEMORY_UNDO
	SET MAX_OPERATION_MEMORY
	SET MODE
	SET OPTIMIZE_REUSE_RESULTS
	SET PASSWORD
	SET QUERY_STATISTICS
	SET QUERY_STATISTICS_MAX_ENTRIES
	SET QUERY_TIMEOUT
	SET REFERENTIAL_INTEGRITY
	SET RETENTION_TIME
	SET SALT HASH
	SET SCHEMA
	SET SCHEMA_SEARCH_PATH
	SET SESSION CHARACTERISTICS
	SET THROTTLE
	SET TRACE_LEVEL
	SET TRACE_MAX_FILE_SIZE
	SET UNDO_LOG
	SET WRITE_DELAY
	SHUTDOWN

	Functions
	Index
	Numeric Functions
	String Functions
	Time and Date Functions
	System Functions
	JSON Functions

	Numeric Functions
	ABS
	ACOS
	ASIN
	ATAN
	COS
	COSH
	COT
	SIN
	SINH
	TAN
	TANH
	ATAN2
	BITAND
	BITGET
	BITNOT
	BITOR
	BITXOR
	LSHIFT
	RSHIFT
	MOD
	CEILING
	DEGREES
	EXP
	FLOOR
	LN
	LOG
	LOG10
	ORA_HASH
	RADIANS
	SQRT
	PI
	POWER
	RAND
	RANDOM_UUID
	ROUND
	ROUNDMAGIC
	SECURE_RAND
	SIGN
	ENCRYPT
	DECRYPT
	HASH
	TRUNCATE
	COMPRESS
	EXPAND
	ZERO

	String Functions
	ASCII
	BIT_LENGTH
	LENGTH
	OCTET_LENGTH
	CHAR
	CONCAT
	CONCAT_WS
	DIFFERENCE
	HEXTORAW
	RAWTOHEX
	INSTR
	INSERT Function
	LOWER
	UPPER
	LEFT
	RIGHT
	LOCATE
	POSITION
	LPAD
	RPAD
	LTRIM
	RTRIM
	TRIM
	REGEXP_REPLACE
	REGEXP_LIKE
	REPEAT
	REPLACE
	SOUNDEX
	SPACE
	STRINGDECODE
	STRINGENCODE
	STRINGTOUTF8
	SUBSTRING
	UTF8TOSTRING
	QUOTE_IDENT
	XMLATTR
	XMLNODE
	XMLCOMMENT
	XMLCDATA
	XMLSTARTDOC
	XMLTEXT
	TO_CHAR
	TRANSLATE

	Time and Date Functions
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	LOCALTIME
	LOCALTIMESTAMP
	DATEADD
	DATEDIFF
	DAYNAME
	DAY_OF_MONTH
	DAY_OF_WEEK
	ISO_DAY_OF_WEEK
	DAY_OF_YEAR
	EXTRACT
	FORMATDATETIME
	HOUR
	MINUTE
	MONTH
	MONTHNAME
	PARSEDATETIME
	QUARTER
	SECOND
	WEEK
	ISO_WEEK
	YEAR
	ISO_YEAR

	System Functions
	ARRAY_GET
	ARRAY_LENGTH
	ARRAY_CONTAINS
	ARRAY_CAT
	ARRAY_APPEND
	ARRAY_SLICE
	AUTOCOMMIT
	CANCEL_SESSION
	CASEWHEN Function
	CAST
	COALESCE
	CONVERT
	CURRVAL
	CSVREAD
	CSVWRITE
	CURRENT_SCHEMA
	CURRENT_CATALOG
	DATABASE_PATH
	DECODE
	DISK_SPACE_USED
	SIGNAL
	ESTIMATED_ENVELOPE
	FILE_READ
	FILE_WRITE
	GREATEST
	IDENTITY
	IFNULL
	LEAST
	LOCK_MODE
	LOCK_TIMEOUT
	LINK_SCHEMA
	MEMORY_FREE
	MEMORY_USED
	NEXTVAL
	NULLIF
	NVL2
	READONLY
	ROWNUM
	SCOPE_IDENTITY
	SESSION_ID
	SET
	TABLE
	TRANSACTION_ID
	TRUNCATE_VALUE
	UNNEST
	USER
	H2VERSION

	JSON Functions
	JSON_OBJECT
	JSON_ARRAY

	Aggregate Functions
	Index
	General Aggregate Functions
	Ordered Aggregate Functions
	Hypothetical Set Functions
	Inverse Distribution Functions
	JSON Aggregate Functions

	General Aggregate Functions
	AVG
	MAX
	MIN
	SUM
	EVERY
	ANY
	COUNT
	STDDEV_POP
	STDDEV_SAMP
	VAR_POP
	VAR_SAMP
	BIT_AND
	BIT_OR
	SELECTIVITY
	ENVELOPE

	Ordered Aggregate Functions
	LISTAGG
	ARRAY_AGG

	Hypothetical Set Functions
	RANK aggregate
	DENSE_RANK aggregate
	PERCENT_RANK aggregate
	CUME_DIST aggregate

	Inverse Distribution Functions
	PERCENTILE_CONT
	PERCENTILE_DISC
	MEDIAN
	MODE

	JSON Aggregate Functions
	JSON_OBJECTAGG
	JSON_ARRAYAGG

	Window Functions
	Index
	Row Number Function
	Rank Functions
	Lead or Lag Functions
	Nth Value Functions
	Other Window Functions

	Row Number Function
	ROW_NUMBER

	Rank Functions
	RANK
	DENSE_RANK
	PERCENT_RANK
	CUME_DIST

	Lead or Lag Functions
	LEAD
	LAG

	Nth Value Functions
	FIRST_VALUE
	LAST_VALUE
	NTH_VALUE

	Other Window Functions
	NTILE
	RATIO_TO_REPORT

	Data Types
	Index
	INT
	BOOLEAN
	TINYINT
	SMALLINT
	BIGINT
	IDENTITY
	DECIMAL
	DOUBLE
	REAL
	TIME
	TIME WITH TIME ZONE
	DATE
	TIMESTAMP
	TIMESTAMP WITH TIME ZONE
	BINARY
	OTHER
	VARCHAR
	VARCHAR_IGNORECASE
	CHAR
	BLOB
	CLOB
	UUID
	ARRAY
	ENUM
	GEOMETRY
	JSON
	INTERVAL
	Interval Data Types
	INTERVAL YEAR
	INTERVAL MONTH
	INTERVAL DAY
	INTERVAL HOUR
	INTERVAL MINUTE
	INTERVAL SECOND
	INTERVAL YEAR TO MONTH
	INTERVAL DAY TO HOUR
	INTERVAL DAY TO MINUTE
	INTERVAL DAY TO SECOND
	INTERVAL HOUR TO MINUTE
	INTERVAL HOUR TO SECOND
	INTERVAL MINUTE TO SECOND

	SQL Grammar
	Index
	Literals
	Datetime fields
	Other Grammar

	Literals
	Value
	Array
	Boolean
	Bytes
	Date
	Date and time
	Decimal
	Dollar Quoted String
	Hex Number
	Int
	JSON
	Long
	Null
	Number
	Numeric
	String
	Time
	Time with time zone
	Timestamp
	Timestamp with time zone
	Interval
	INTERVAL YEAR
	INTERVAL MONTH
	INTERVAL DAY
	INTERVAL HOUR
	INTERVAL MINUTE
	INTERVAL SECOND
	INTERVAL YEAR TO MONTH
	INTERVAL DAY TO HOUR
	INTERVAL DAY TO MINUTE
	INTERVAL DAY TO SECOND
	INTERVAL HOUR TO MINUTE
	INTERVAL HOUR TO SECOND
	INTERVAL MINUTE TO SECOND

	Datetime fields
	Datetime field
	Year field
	Month field
	Day of month field
	Hour field
	Minute field
	Second field
	Millisecond field
	Microsecond field
	Nanosecond field
	Timezone hour field
	Timezone minute field
	Timezone second field
	Day of week field
	ISO week year field
	ISO day of week field
	Week of year field
	ISO week of year field
	Quarter field
	Day of year field
	Epoch field

	Other Grammar
	Alias
	And Condition
	Case
	Case When
	Cipher
	Column Definition
	Comments
	Compare
	Condition
	Condition Right Hand Side
	Constraint
	Constraint Name Definition
	Csv Options
	Data Change Delta Table
	Data Type
	Digit
	Expression
	Factor
	Grouping element
	Hex
	Index Column
	Insert columns and source
	Insert values
	Join specification
	Merge when clause
	Merge when matched clause
	Merge when not matched clause
	Name
	Operand
	Order
	Query
	Quoted Name
	Referential Constraint
	Referential Action
	Script Compression Encryption
	Row value expression
	Select Expression
	Sequence value expression
	Sequence options
	Sequence option
	Set clause list
	Summand
	Table Expression
	Within group specification
	Wildcard expression
	Window name or specification
	Window specification
	Window frame
	Window frame preceding
	Window frame bound
	Term
	Time zone
	Column

	System Tables
	Information Schema
	CATALOGS
	COLLATIONS
	COLUMNS
	COLUMN_PRIVILEGES
	CONSTANTS
	CONSTRAINTS
	CROSS_REFERENCES
	DOMAINS
	FUNCTION_ALIASES
	FUNCTION_COLUMNS
	HELP
	INDEXES
	IN_DOUBT
	KEY_COLUMN_USAGE
	LOCKS
	QUERY_STATISTICS
	REFERENTIAL_CONSTRAINTS
	RIGHTS
	ROLES
	SCHEMATA
	SEQUENCES
	SESSIONS
	SESSION_STATE
	SETTINGS
	SYNONYMS
	TABLES
	TABLE_CONSTRAINTS
	TABLE_PRIVILEGES
	TABLE_TYPES
	TRIGGERS
	TYPE_INFO
	USERS
	VIEWS

	Range Table

	Build
	Portability
	Environment
	Building the Software
	Build Targets
	Using Apache Lucene

	Using Maven 2
	Using a Central Repository
	Maven Plugin to Start and Stop the TCP Server
	Using Snapshot Version

	Using Eclipse
	Translating
	Submitting Source Code Changes
	Reporting Problems or Requests
	Automated Build
	Generating Railroad Diagrams

	History and Roadmap
	Change Log
	Roadmap
	History of this Database Engine
	Why Java
	Supporters

	Frequently Asked Questions
	I Have a Problem or Feature Request
	Are there Known Bugs? When is the Next Release?
	Is this Database Engine Open Source?
	Is Commercial Support Available?
	How to Create a New Database?
	How to Connect to a Database?
	Where are the Database Files Stored?
	What is the Size Limit (Maximum Size) of a Database?
	Is it Reliable?
	Why is Opening my Database Slow?
	My Query is Slow
	H2 is Very Slow
	Column Names are Incorrect?
	Float is Double?
	How to Translate this Project?
	How to Contribute to this Project?

